In 3.8 moles of li, there are about <span>0.144071459 grams. I assume that you are talking about lithium.</span>
Answer:
The electron configuration for this atom is Calcium, which has 2 valence electrons.
Explanation:
Following the periodic table and with the electron configuration, you will end up with calcium, which has 2 valence electrons. (Always follow the electron configuration from left to right! It begins at hydrogen, then to helium... and so on.)
1s2 -> He....
2s2 -> Be....
2p6 -> Ne...
3s2 -> Mg...
3p6 -> Ar...
4s2 -> Ca.
Answer:
Option D. 3, 1, 3, 1
Explanation:
From the question given above,
HNO₃ + Al(OH)₃ —> HOH + Al(NO₃)₃
The equation can be balance as follow:
HNO₃ + Al(OH)₃ —> HOH + Al(NO₃)₃
There are 3 atoms of N on the right side and 1 atom on the left side. It can be balance by 3 in front of HNO₃ as shown below:
3HNO₃ + Al(OH)₃ —> HOH + Al(NO₃)₃
There are a total of 6 atoms of H on the left side and 2 atoms on the right side. It can be balance by 3 in front of HOH as shown below:
3HNO₃ + Al(OH)₃ —> 3HOH + Al(NO₃)₃
Now, the equation is balanced.
Thus, the coefficients are 3, 1, 3, 1