1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kupik [55]
3 years ago
7

?????????????????????????????????????*

Physics
1 answer:
Gelneren [198K]3 years ago
8 0

Answer:

61.25N to the positive x axis

You might be interested in
Two forces Upper FSubscript Upper A Baseline Overscript right-arrow EndScripts and Upper FSubscript Upper B Baseline Overscript
Pavel [41]

Answer:

Part a)

F_A = 4.59 N

Part B)

F_B = 1.28 N

Explanation:

As we know that when both the forces are acting on the object in same direction then we will have

F_A + F_B = ma

as we know that

a = 0.554 m/s^2

m = 10.6 kg

now we will have

F_A + F_B = 10.6(0.554)

F_A + F_B = 5.87 N

Now two forces are in opposite direction then we have

F_A - F_B = 10.6(0.313)

F_A - F_B = 3.32 N

Part A)

Now we will have from above two equation

F_A = 4.59 N

Part B)

Similarly for other force we have

F_B = 1.28 N

5 0
3 years ago
We have three identical metallic spheres A, B, C. Initially sphere A is charged with charge Q, while B and C are neutral. First,
larisa [96]

Answer:

The final charges of each sphere are:   q_A = 3/8 Q , q_B = 3/8 Q ,               q_C = 3/4 Q

Explanation:

This problem asks for the final charge of each sphere, for this we must use that the charge is distributed evenly over a metal surface.

Let's start Sphere A makes contact with sphere B, whereby each one ends with half of the initial charge, at this point

                q_A = Q / 2

                q_B = Q / 2

Now sphere A touches sphere C, ending with half the charge

                q_A = ½ (Q / 2) = ¼ Q

                q_B = ¼ Q

Now the sphere A that has Q / 4 of the initial charge is put in contact with the sphere B that has Q / 2 of the initial charge, the total charge is the sum of the charge

                  q = Q / 4 + Q / 2 = ¾ Q

This is the charge distributed between the two spheres, sphere A is 3/8 Q and sphere B is 3/8 Q

                  q_A = 3/8 Q

                  q_B = 3/8 Q

The final charges of each sphere are:

                q_A = 3/8 Q

                q_B = 3/8 Q

                q_C = 3/4 Q

7 0
3 years ago
To solve a problem using the equation for keplerâs third law, enrico must convert the average distance of mars from the sun from
Natali5045456 [20]
1 astronomical unit = 149597870700m
Enrico should divide distance in meters with this number.
3 0
3 years ago
Read 2 more answers
I need help with these questions
Feliz [49]
7. PE=0.5×700n/m×0.9m^2
0.9^2=0.81m
0.5×700×0.81= 283.5J

8. 2000=0.5×(x)×1.5m^2
1.5^2= 0.25
0.25×0.5=0.125
2000=0.125 (x)
2000/0.125=x
x=16000 n/m

9. 4000=0.5 (375 n/m)×(x)^2
0.5×187.5 (x)
4000/187.5=21.3333333333


6 0
4 years ago
A modern compact fluorescent lamp contains 1.4 mg of mercury (Hg). If each mercury atom in the lamp were to emit a single photon
Reika [66]

Answer:

A. 1.64 J

Explanation:

First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:

n=\frac{m}{M_m}

where

n is the number of moles

m = 1.4 mg = 0.0014 g is the mass of mercury

Mm = 200.6 g/mol is the molar mass of mercury

Substituting, we find

n=\frac{0.0014 g}{200.6 g/mol}=7.0\cdot 10^{-6} mol

Now we have to find the number of atoms contained in this sample of mercury, which is given by:

N=n N_A

where

n is the number of moles

N_A=6.022\cdot 10^{23} mol^{-1} is the Avogadro number

Substituting,

N=(7.0\cdot 10^{-6} mol)(6.022\cdot 10^{23} mol^{-1})=4.22\cdot 10^{18} atoms

The energy emitted by each atom (the energy of one photon) is

E_1 = \frac{hc}{\lambda}

where

h is the Planck constant

c is the speed of light

\lambda=508 nm=5.08\cdot 10^{-7}nm is the wavelength

Substituting,

E_1 = \frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{5.08\cdot 10^{-7} m}=3.92\cdot 10^{-19} J

And so, the total energy emitted by the sample is

E=nE_1 = (4.22\cdot 10^{18} )(3.92\cdot 10^{-19}J)=1.64 J

4 0
3 years ago
Other questions:
  • The movement of thermal energy is controlled by__
    14·2 answers
  • What happens to potential energy that is not completely converted to kinetic
    13·1 answer
  • A tire hanging from a tree is at rest. The force of gravity is pulling down on the tire. Another force, called tension, is pulli
    11·2 answers
  • A 79 kg person sits on a 3.7 kg chair. Each leg of the chair makes contact with the floor in a circle that is 1.3 cm in diameter
    8·1 answer
  • Beta particles will:
    15·2 answers
  • I WILL NAME YOU BRAINLIEST IF YOU ANSWER THIS!! This question will make you think twice, let see if you can answer this! Worth 1
    12·2 answers
  • ________ is described as the pulling force transmitted by the means of a
    12·2 answers
  • A 25 kg child is sitting at the top of a 4 m tall slide, what is his potential energy?
    7·1 answer
  • HELPPP PLEASE !!!!!!!
    10·1 answer
  • WHAT IS THE DIRECT PATH DIRECTION FROM POINT A TO B
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!