Answer:
Explanation:
If Ek is the kinetic energy and m is the mass and v is the velocity then v can be calculated as follows
Ek= 1/2 ×( m × v² )
2Ek= mv²
2Ek/m = v²
v =√(2Ek/m)
m = 0.1 kg
v= √(2x8/0.1)= 12.65 m/s
Answer:
a force that attracts matter to the earth
Explanation:
depends on where you are the gravity can be different in space there is no gravity on Earth there is , that's why when you jump you come back down
Answer: Base units
The principal SI units that are used to derive all other SI units are called base units. The base units are the units of fundamental quantities e.g. M L T that is Mass, Length, and Time. All other physical quantities can be written in the fundamental dimension forms. The physical quantities are not measured directly but are build up from the building blocks that are the fundamental quantities which have base units.
Answer:
The increase in potential energy of the ball is 115.82 J
Explanation:
Conceptual analysis
Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:
U = m × g × h
U: Potential Energy in Joules (J)
m: mass in kg
g: acceleration due to gravity in m/s²
h: height in m
Equivalences
1 kg = 1000 g
1 ft = 0.3048 m
1 N = 1 (kg×m)/s²
1 J = N × m
Known data




Problem development
ΔU: Potential energy change
ΔU = U₂ - U₁
U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁
U₂ - U₁ = mₓg(h₂ - h₁)

The increase in potential energy of the ball is 115.82 J
Answer:
Unbalanced forces are not examples of Newton's third law because not all opposite reactions are unbalanced forces.
Explanation: