Answer:
Step-by-step explanation:
-16+-x/4=-3
-x/4=13
-x=52
x=-52
Answer:
x = 2
x = -3/2 or -1.5
Step-by-step explanation:
For this, I would use the "slip and slide" method. LOL I know the name is cheesy, but that's what my teacher called it!
First, you "slip" the coefficent of the leading term (2) to the constant, and multiply.
The equation becomes:
x² - x - 6(2) = 0
x² - x - 12 = 0
Then, you factor this out by looking at the second and third terms. You're looking for 2 factors of -12 that would add up to -1 ( the coefficent of the second term).
Automatically, think of 3 and 4, because the difference between them is 1.
The factors must be (x-4) and (x+3) because they multiple to -12, and add up to -1.
This step is extremely important! Lol I used to forget it a lot, but make sure you divide the constant in each factor by the original number you "slipped".
It would become (x-(4/2))(x+3/2) = (x-2)(x+3/2)
With (x+3/2), you don't want to leave it as a fraction or decimal. It's equivalent to (2x+3). However, the informal form is easier to identify the value of x.
Answer:
12x + 4
Step-by-step explanation:
ok so a rectangle has 4 sides, 2 of which are called lengths, and 2 of which are widths.
length = 2x-3
width = 4x+5
the perimenter is the total of the 4 sides.
2(2x-3) = 4x-6 (the total for lengths)
2(4x+5) = 8x+10 (the total for widths)
add the 2 together:
12x+4
If both polynomials are the same degree, divide the coefficients of the highest degree terms. If the polynomial in the numerator is a lower degree than the denominator, the x-axis (y = 0) is the horizontal asymptote<span>.</span>The curves approach these asymptotes but never cross them. To find the vertical asymptote(s) of a rational function, simply set the denominator equal to 0 and solve for x.Finding Slant Asymptotes<span> of Rational Functions.
A </span>slant (oblique) asymptote occurs<span> when the polynomial in the numerator is a higher degree than the polynomial in the denominator. To </span>find the slant asymptote<span> you must divide the numerator by the denominator using either long division or synthetic division.
</span>