1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arlecino [84]
3 years ago
5

An external resistor with resistance R is connected to a battery that has emf ε and internal resistance r. Let P be the electric

al power output of the source. By conservation of energy, P is equal to the power consumed by R. What is the value of P in the limit that R is:_______. (a) What is the value of P in the limit that R is very small?
(b) What is the value of P in the limit that R is very large?(c) Show that the power output of the battery is a maximum when R = r . What is this maximum P in terms of ε and r? (d) A battery has [Math Processing Error] and [Math Processing Error]. What is the power output of this battery when it is connected to a resistor R, for [Math Processing Error], [Math Processing Error], and [Math Processing Error]? Are your results consistent with the general result that you derived in part (b)?
Physics
1 answer:
ELEN [110]3 years ago
8 0

Answer:

a. 0 W b. ε²/R c. at R = r maximum power = ε²/4r d. For R = 2.00 Ω, P = 227.56 W. For R = 4.00 Ω, P = 256 W. For R = 6.00 Ω, P = 245.76 W

Explanation:

Here is the complete question

An external resistor with resistance R is connected to a battery that has emf ε and internal resistance r. Let P be the electrical power output of the source. By conservation of energy, P is equal to the power consumed by R. What is the value of P in the limit that R is (a) very small; (b) very large? (c) Show that the power output of the battery is a maximum when R = r . What is this maximum P in terms of ε and r? (d) A battery has ε= 64.0 V and r=4.00Ω. What is the power output of this battery when it is connected to a resistor R, for R=2.00Ω, R=4.00Ω, and R=6.00Ω? Are your results consistent with the general result that you derived in part (b)?

Solution

The power P consumed by external resistor R is P = I²R since current, I = ε/(R + r), and ε = e.m.f and r = internal resistance

P = ε²R/(R + r)²

a. when R is very small , R = 0 and P = ε²R/(R + r)² = ε² × 0/(0 + r)² = 0/r² = 0

b. When R is large, R >> r and R + r ⇒ R.

So, P = ε²R/(R + r)² = ε²R/R² = ε²/R

c. For maximum output, we differentiate P with respect to R

So dP/dR = d[ε²R/(R + r)²]/dr = -2ε²R/(R + r)³ + ε²/(R + r)². We then equate the expression to zero

dP/dR = 0

-2ε²R/(R + r)³ + ε²/(R + r)² = 0

-2ε²R/(R + r)³ =  -ε²/(R + r)²

cancelling out the common variables

2R =  R + r

2R - R = R = r

So for maximum power, R = r

So when R = r, P = ε²R/(R + r)² = ε²r/(r + r)² = ε²r/(2r)² = ε²/4r

d. ε = 64.0 V, r = 4.00 Ω

when R = 2.00 Ω, P = ε²R/(R + r)² = 64² × 2/(2 + 4)² = 227.56 W

when R = 4.00 Ω, P = ε²R/(R + r)² = 64² × 4/(4 + 4)² = 256 W

when R = 6.00 Ω, P = ε²R/(R + r)² = 64² × 6/(6 + 4)² = 245.76 W

The results are consistent with the results in part b

You might be interested in
The depth of a pond is 1.5m. Calculate the pressure caused by the water at the bottom of the pond ?​?
zepelin [54]

Answer:

Area=1.5(1.5)=2.25m^2

Force of gravity=10N

\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{Force}{Area}\end{gathered}

⟼Pressure=

Area

Force

\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{10}{2.25}\end{gathered}

⟼Pressure=

2.25

10

\begin{gathered}\\ \sf\longmapsto Pressure=4.4Pa\end{gathered}

⟼Pressure=4.4Pa

5 0
3 years ago
What does it mean by that "length of an object is m"​
Damm [24]
Meters ?? or just a variable
8 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
Ayuda por favor (archivo adjunto) con un ejercicio de expresión sobre periodo de oscilación de esta figura:
vodka [1.7K]

Answer:

nolo se

Explanation:

no lo se

8 0
2 years ago
* CRIMINOLOGY*
Setler [38]

I think the answer is B.

Hope this helps.

5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the five things to do in P.E
    14·2 answers
  • if you walk straight on a road for 100 m then turn around and walk back to your starting point what is your distance
    14·1 answer
  • Will every solid with the same dimensions have the same density?Explain your answer.
    6·1 answer
  • What is the distance between two consecutive points in phase on a wave called?
    14·2 answers
  • By how much does the earth-Sun distance change? 300,000 miles 500,000 miles 3,000,000 miles 3,500 miles
    12·1 answer
  • Adjacent antinodes of a standing wave on a string are 15.0 cm apart. A particle at an antinode oscillates in simple harmonic mot
    5·1 answer
  • What is the energy contained in a 1.30 m3 volume near the Earth's surface due to radiant energy from the Sun
    6·1 answer
  • Non renewable resources example ​
    11·1 answer
  • Why would you have trouble breathing at high altitudes?
    8·1 answer
  • 32. A ball is going to fall downward through a vacuum chamber. If it has maximum potential energy at the top and maximum kinetic
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!