Answer: 50J
Explanation:
Mechanical energy follows the same principles of kinetic energy and potential energy, it is conserved. So Ei = Ef.
Mechanical energy is the sum of ALL energy's. There is no friction, so its just kinetic plus potential.
37.5 + 12.5 = 50J
Since the particle has not touched the ground, it has not transferred any energy to the ground yet, therefore the mechanical energy must still be 50J; mostly in kinetic energy with a very small amount of potential because of the low height relative to the ground.
The gentleman bug's angular speed is the same as the ladybug's (1 rev/s)
Answer:
The graph appears to be in error.
The actual figure appears to be a rhombus with sides of 5 and 15 with a height of 5
The work done (F * S) is the area of the rhombus
1/2 * (5 +15) * 5 = 50 J
Answer:
T = 480.2N
Explanation:
In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.
The forces on the boxes are:
(1)
T: tension of the rope
M: mass of the boxes 0= 49kg
g: gravitational acceleration = 9.8m/s^2
The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.
By using the equation (1) you obtain:

The woman needs to pull the rope at 480.2N