Answer:
The answer to your question is 8.75 x 10 ²⁵ atoms of Magnesium
Explanation:
Data
Atomic mass of Magnesium = 24.31 g
Atoms of magnesium = 3.60 x 10²⁴
Process
Solve this porblem using a rule of three
1 atom of Magnesium --------------- 24.31 g
3.60 x 10²⁴ ---------------- x
x = (3.60 x 10²⁴ x 24.31) / 1
x = 8.75 x 10 ²⁵ atoms
<u>Answer:</u> The value of
for the chemical equation is 
<u>Explanation:</u>
For the given chemical equation:

To calculate the
for given value of Gibbs free energy, we use the relation:

where,
= Gibbs free energy = 78 kJ/mol = 78000 J/mol (Conversion factor: 1kJ = 1000J)
R = Gas constant = 
T = temperature = 1000 K
= equilibrium constant in terms of partial pressure = ?
Putting values in above equation, we get:

Hence, the value of
for the chemical equation is 
There is approximately 1.62g of KF depending on the rounding used
Exothermic gives off heat/energy and endothermic takes in heat/energy. Exothermic example: a candle flame
Endothermic example: baking bread
In Exothermic, you can expect the surrounding temp. to rise, and in Endothermic you can expect the surrounding temperature to fall.
Hope this helps
Answer:
Triacylglycerols (triglycerides) are non-polar or hydrophobic molecules
Glycerophospholipids (phosphoglycerides) are polar or hydrophilic
Explanation:
Triacylglycerides (TGs) are esters synthesized by the esterification of three molecules of glycerol and fatty acid, and this is essentially by the replacement of the three hydroxyl groups on glycerol with three fatty acids. This removes the hydrophilic property from the glycerol molecule hence TGs are only soluble in non-polar solvents like alcohol and benzene, and TGs are therefore the storage forms of fats in adipose tissues.
Glycerophospholipids are formed by the addition of two hydrophobic fatty acid groups and one phosphoric acid (phosphate group) to glycerol (alcohol) leaving a hydrophilic head (phosphate end) and a hydrophobic tail (fatty acid ends). This amphipathic property of this molecule makes it a suitable molecule for membrane structures, especially of cells (lipid bi-layer), with an arrangement where the hydrophilic side interacts with the aqueous environment, while the hydrophobic side makes contact with the non-aqueous environment.