the answer is 0.000097 KM
Answer : The fugacity in the solution is, 16 bar.
Explanation : Given,
Fugacity of a pure component = 40 bar
Mole fraction of component = 0.4
Lewis-Randall rule : It states that in an ideal solution, the fugacity of a component is directly proportional to the mole fraction of the component in the solution.
Now we have to calculate the fugacity in the solution.
Formula used :

where,
= fugacity in the solution
= fugacity of a pure component
= mole fraction of component
Now put all the give values in the above formula, we get:


Therefore, the fugacity in the solution is, 16 bar.
Answer:
16.06 L was the initial volume of the balloon.
Explanation:
Initial moles of freon in ballon = 
Initial volume of freon gas in ballon = 
Moles of freon gas added in the balloon = n = 3.50 mole
Final moles of freon in ballon = 
Final volume of freon gas in ballon = 
Using Avogadro's law:
( at constant pressure and temperature)

16.06 L was the initial volume of the balloon.
The change in internal energy of the combustion of biphenyl in Kj is calculated as follows
=heat capacity of bomb calorimeter x delta T where delta T is change in temperature
delta T = 29.4 -25.8= 3.6 c
= 5.86 kj/c x 3.6 c = 21.096 kj
Answer:
Mass is the amount of matter in an object.
Weight is how much an object weighs.
Hope this helps!