Answer:
a)3312 x 10⁴ J
b)I = 57.5 A
c)9200 W
Explanation:
Given that
P =4600 W
Time t= 2 h = 2 x 3600 s= 7200 s
We know that
1 W = 1 J/s
a)
Energy stored in the battery = P .t
=4600 x 7200 J
=3312 x 10⁴ J
b)
We know that power P given as
P = V .I
V=Voltage ,I =Current
4600 = 80 x I
I = 57.5 A
c)
The energy supplied = 4600 x 2 = 9200 W
<h3><u>Answer;</u></h3>
producing a path for current to flow
<h3><u>Explanation;</u></h3>
- An AC generator is a device that converts mechanical energy into electrical energy using the principle of electromagnetic induction.
- <em><u>Slip rings are two hollow rings to which two ends of the armature coil are connected. These rings rotate with the rotation of the coil. They function to to allow for electrical contact with the brushes.</u></em>
- Slip rings therefore, provide a means for connecting the rotating armature to an external circuit.
Find the average speed and the average velocity.
Average speed = distance / time
distance = 10 x 8000 m = 80,000 m
time = 20 min * 60 s/min = 1200 s
Average speed = 80,000 m / 1200 s = 66.67 m/s
Average velocity = displacement / time
Given that the race car made complete circles the final poin is the same initial point, then its displacement is zero and the average velocity is zero too.
Answer:
a,b,c,e,d
Explanation:
The typical approach by the scientists use to understand the physical world includes the following steps:
Identifying a Problem
Researching the Information
Stating a Hypothesis (Possible Solution)
Testing the Hypothesis
Gather Data
Analysis of the Data
Stating a Conclusion
Publishing the Result
Therefore, according to the question the correct order would be:
a. Observation of physical world.
b. Create hypothesis about observation.
c. Test consequences of hypothesis
e. Adjust results to agree with popular opinion
d. Report outcome
Answer:
Spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.
Explanation:
Physically speaking, stress is equal to the axial force divided by effective transversal area of spring. In addition, springs have usually a linear relationship between stress and strain in <u>elastic region</u>, since they are made of ductile materials. Axial force is directly proportional to axial stress, which is also directly proportional to axial strain.
Then, if force is greater than force associated with elastic limit of the spring, then spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.