1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hjlf
3 years ago
10

Potassium-40 is a radioactive isotope that decays into a single argon-40 atom and other particles with a half-life of 1:25 billi

on years. A rock sample was found that contained 8 times as many potassium-40 atoms as argon-40 atoms. Assume the argon-40 only comes from radioactive decay. Date the rock to the time it contained only potassium-40.
Chemistry
1 answer:
stiks02 [169]3 years ago
8 0

Answer:

0.147 billion years = 147.35 million years.

Explanation:

  • It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
  • Half-life time is the time needed for the reactants to be in its half concentration.
  • If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
  • Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
  • The half-life of Potassium-40 is 1.25 billion years.

  • For, first order reactions:

<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>

Where, k is the rate constant of the reaction.

t1/2 is the half-life of the reaction.

∴ k =0.693/(t1/2) = 0.693/(1.25 billion years) = 0.8 billion year⁻¹.

  • Also, we have the integral law of first order reaction:

<em>kt = ln([A₀]/[A]),</em>

<em></em>

where, k is the rate constant of the reaction (k = 0.8 billion year⁻¹).

t is the time of the reaction (t = ??? year).

[A₀] is the initial concentration of (Potassium-40) ([A₀] = 100%).

[A] is the remaining concentration of (Potassium-40) ([A] = 88.88%).

  • At the time needed to be determined:

<em>8 times as many potassium-40 atoms as argon-40 atoms. Assume the argon-40 only comes from radioactive decay.</em>

  • If we start with 100% Potassium-40:

∴ The remaining concentration of Potassium-40 ([A] = 88.88%).

and that of argon-40 produced from potassium-40 decayed = 11.11%.

  • That the ratio of (remaining Potassium-40) to (argon-40 produced from potassium-40 decayed) is (8: 1).

∴ t = (1/k) ln([A₀]/[A]) = (1/0.8 billion year⁻¹) ln(100%/88.88%) = 0.147 billion years = 147.35 million years.

You might be interested in
What do the subscripts in the formula for ethane represent?
Sedaia [141]

Answer:

the number of carbon and hydrogen atoms present in the molecule of Ethane that is it contains two carbon atoms and six hydrogen atoms

Explanation:

8 0
2 years ago
Please Help, will give 30 points! The following data was collected when a reaction was performed experimentally in the laborator
Sedaia [141]

Answer:

9 moles of NaNO3.

Explanation:

The balanced equation for the reaction is given below:

Al(NO3)3 + 3NaCl —> 3NaNO3 + AlCl3

Next, we shall determine the number of mole of Al(NO3)3 and NaCl that reacted and the number of mole of NaNO3 produced from the balanced equation.

From the balanced equation above,

1 mole of Al(NO3)3 reacted with 3 moles of NaCl to produce 3 moles of NaNO3.

Next, we shall determine the limiting reactant.

The limiting reactant can be obtained as follow:

From the balanced equation above,

1 mole of Al(NO3)3 reacted with 3 moles of NaCl.

Therefore, 4 moles of Al(NO3)3 will react with = (4 x 3)/1 = 12 moles of NaCl.

From the calculations made above, we can see that it will take a higher amount i.e 12 moles than what was given i.e 9 moles of NaCl to react completely with 4 moles of Al(NO3)3.

Therefore, NaCl is the limiting reactant and Al(NO3)3 is the excess reactant.

Finally, we shall determine the maximum amount of NaNO3 produced from the reaction.

In this case, the limiting reactant will be used as it will produce the maximum amount of NaNO3 since all of it is consumed by the reaction.

The limit reactant is NaCl and the maximum amount of NaNO3 produced can be obtained as follow:

From the balanced equation above,

3 moles of NaCl reacted to produce 3 moles of NaNO3.

Therefore, 9 moles of NaCl will also react to produce 9 moles of NaNO3.

From the calculations made above, the maximum amount of NaNO3 produced is 9 moles

6 0
3 years ago
Be sure to answer all parts. The percent by mass of bicarbonate (HCO3−) in a certain Alka-Seltzer product is 32.5 percent. Calcu
pochemuha

Answer : The volume of CO_2 will be, 514.11 ml

Explanation :

The balanced chemical reaction will be,

HCO_3^-+HCl\rightarrow Cl^-+H_2O+CO_2

First we have to calculate the  mass of HCO_3^- in tablet.

\text{Mass of }HCO_3^-\text{ in tablet}=32.5\% \times 3.79g=\frac{32.5}{100}\times 3.79g=1.23175g

Now we have to calculate the moles of HCO_3^-.

Molar mass of HCO_3^- = 1 + 12 + 3(16) = 61 g/mole

\text{Moles of }HCO_3^-=\frac{\text{Mass of }HCO_3^-}{\text{Molar mass of }HCO_3^-}=\frac{1.23175g}{61g/mole}=0.0202moles

Now we have to calculate the moles of CO_2.

From the balanced chemical reaction, we conclude that

As, 1 mole of HCO_3^- react to give 1 mole of CO_2

So, 0.0202 mole of HCO_3^- react to give 0.0202 mole of CO_2

The moles of CO_2 = 0.0202 mole

Now we have to calculate the volume of CO_2 by using ideal gas equation.

PV=nRT

where,

P = pressure of gas = 1.00 atm

V = volume of gas = ?

T = temperature of gas = 37^oC=273+37=310K

n = number of moles of gas = 0.0202 mole

R = gas constant = 0.0821 L.atm/mole.K

Now put all the given values in the ideal gas equation, we get :

(1.00atm)\times V=0.0202 mole\times (0.0821L.atm/mole.K)\times (310K)

V=0.51411L=514.11ml

Therefore, the volume of CO_2 will be, 514.11 ml

6 0
2 years ago
Identify the variables in this hypothesis.
Zanzabum

Answer:

AJJJJJJJJJJJJJJ

Explanation:

5 0
3 years ago
Read 2 more answers
Which element forms a chloride of the type XCl2
Nat2105 [25]

Explanation:

Element X forms a chloride with the formula XCl 2 , which is a solid with a high melting point. X would most likely be in the same group of the Periodic Table as. (a) Na (b) Mg (c) Al (d) Si. the answer is Mg .

8 0
2 years ago
Other questions:
  • H3c6h5o7(aq) + 3nahco3(aq) → 3co2(g) + 3h2o(l) + na3c6h5o7(aq) calculate the number of grams of baking soda (nahco3; molar mass
    10·1 answer
  • How many atoms are accommodated by the available orbitals for Ne?
    10·1 answer
  • Double standard refers to
    12·1 answer
  • For the following formula, C4H9Cl, calculate the IHD and select all the types of unsaturation that might be present in the molec
    7·1 answer
  • The solubility of silver chloride can be increased by dissolving it in a solution containing ammonia. agcl (s) ag+ (aq) + cl- (a
    7·2 answers
  • What do you call material formed by weathering that is then eroded and deposited
    9·1 answer
  • A sealed container of nitrogen gas is at 1000.0 kPa pressure and at a temperature of 20.00 °C. The container is left in the sun,
    15·1 answer
  • A solution is prepared by dissolving sugar in water. The solution is 25% by mass, sugar. How many grams of water are in 472 gram
    12·2 answers
  • Sally does the work in 2.3 hours and Pete does 2.5
    10·2 answers
  • What part of the cell do energy storage molecules come from ?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!