<span>At STP 1 mol of an ideal gas has a volume of 22.4 L.
We assume (from the question) that the methane has an ideal behavior.
Hence if 1 mole of an ideal gas ccupies a volume of 22.4 L
Then 0.75 mole occupies X
Hence X * 1 = 0.75 * 22.4
X = 16.8L</span>
Q=hc A (Ts-Ta)
q = heat transfered per unit time
A= heat transfer area of the surface
hc= convective heat transfer coefficient of the process
Ts= temperature of the surface
Ta= temperature of the air
Answer:
When hydrogen is subjected to large enough pressure, it solidifies according to theory.
Explanation:
According to theory, when hydrogen molecules are subjected to enormous degree of pressure the molecules will solidify.
What happens here is that the hydrogen–hydrogen bonds in the hydrogen molecule will break apart and the molecules collapses into hydrogen atoms.
Hence, when hydrogen is subjected to large enough pressure, it solidifies according to theory.
The gravitational pull of the moon is not strong enough to attract a significant atmosphere.
Answer:
0.190L of hydrogen may be produced by the reaction.
Explanation:
Our reaction is:
3Mg + 2H₃PO₄ → Mg₃(PO₄)₂ + 3H₂
We need to determine the limting reactant. Let's find out the moles of each:
5.159×10²¹ atoms . 1 mol / 6.02×10²³ atoms = 0.00857 moles of Mg
55.23 g . 1 mol / 97.97 g = 0.563 moles of acid
2 moles of acid react to 3 moles of Mg
0.563 moles of acid may react to: (0.563 . 3) /2 = 0.8445 moles of Mg
Definetely the limting reactant is Mg.
As ratio is 3:3, 3 moles of Mg can produce 3 moles of hydrogen
Then, 0.00857 moles of Mg must produce 0.00857 moles of H₂
At STP, 1 mol of any gas occupies 22.4L
0.00857 mol . 22.4L / 1mol = 0.190L