Step-by-step explanation:
sinA= BC/AC
= 24/26
= 12/13
cosA= AC/AB
= 10/26
= 5/13
tanA= BC/AC
=24/10
= 12/5
Multiplying both sides of an equation by the same number keeps the equation true. In this example, both sides are multiplied by 3, so the equation isn't changed.
Here is the formula you'll need
Total = Principal * (1 + (rate/n))^n*years
I don't know how to solve that for "n" so we'll use trial and error.
If compounded annually, total =
<span>
<span>
<span>
10,841.24
</span>
</span>
</span>
If compounded quarterly, total =
<span>
<span>
<span>
10,955.64
</span>
</span></span><span>If compounded monthly, total =
</span>
<span>
<span>
<span>
10,981.82
</span>
</span>
</span>
If compounded daily, total =
<span>
<span>
<span>
10,994.58
</span>
</span>
</span>
Therefore the answer is "A", daily.
Source:
http://www.1728.org/compint3.htm
<span>
</span><span><span>
</span>
</span>
Is 16x47 what you're asking for? The answer to 16x47 is 752 if that's what you needed.
Answer:
a) ![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) ![P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c) n=62
d) n=138
Step-by-step explanation:
Note: "Each chip contains n transistors"
a) A chip needs all n transistor working to function correctly. If p is the probability that a transistor is working ok, then:
![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) The memory module works with when even one of the chips is defective. It means it works either if 8 chips or 9 chips are ok. The probability of the chips failing is independent of each other.
We can calculate this as a binomial distribution problem, with n=9 and k≥8:
![P[M]=P[C_9]+P[C_8]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)\\\\P[M]=p^{8n}(p^{n}+9(1-p^n))\\\\P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%28p%5E%7Bn%7D%2B9%281-p%5En%29%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c)
![P[M]=(0.999)^{8n}(9-8(0.999)^n)=0.9](https://tex.z-dn.net/?f=P%5BM%5D%3D%280.999%29%5E%7B8n%7D%289-8%280.999%29%5En%29%3D0.9)
This equation was solved graphically and the result is that the maximum number of chips to have a reliability of the memory module equal or bigger than 0.9 is 62 transistors per chip. See picture attached.
d) If the memoty module tolerates 2 defective chips:
![P[M]=P[C_9]+P[C_8]+P[C_7]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1+\binom{9}{7}P[C]^7(1-P[C])^2\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])+36P[C]^7(1-P[C])^2\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)+36p^{7n}(1-p^n)^2](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%2BP%5BC_7%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%2B%5Cbinom%7B9%7D%7B7%7DP%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%2B36P%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%2B36p%5E%7B7n%7D%281-p%5En%29%5E2)
We again calculate numerically and graphically and determine that the maximum number of transistor per chip in this conditions is n=138. See graph attached.