Answer:
Electricity, as you probably already know, is the flow of electrons through a conductive path like a wire. This path is called a circuit. ... The chemical reactions in the battery causes a build up of electrons at the anode. This results in an electrical difference between the anode and the cathode
Answer:
the torque capacity is 30316.369 lb-in
Explanation:
Given data
OD = 9 in
ID = 7 in
coefficient of friction = 0.2
maximum pressure = 1.5 in-kip = 1500 lb
To find out
the torque capacity using the uniform-pressure assumption.
Solution
We know the the torque formula for uniform pressure theory is
torque = 2/3 ×
× coefficient of friction × maximum pressure ( R³ - r³ ) .....................................1
here R = OD/2 = 4.5 in and r = ID/2 = 3.5 in
now put all these value R, r, coefficient of friction and maximum pressure in equation 1 and we will get here torque
torque = 2/3 ×
× 0.2 × 1500 ( 4.5³ - 3.5³ )
so the torque = 30316.369 lb-in
Staying hydrated at all times
Answer:
-35 degrees F
When mixed in equal parts with water (50/50), antifreeze lowers the freezing point to -35 degrees F and raises the boiling temperature to 223 degrees F. Antifreeze also includes corrosion inhibitors to protect the engine and cooling system against rust and corrosion.
Answer:
the MTTF of the transceiver is 50.17
Explanation:
Given the data in the question;
failure modes = 0.1 failure per hour
system reliability = 0.85
mission time = 5 hours
Now, we know that the reliability equation for this situation is;
R(t) = [ 1 - ( 1 -
)³] 
so we substitute
R(5) = [ 1 - ( 1 -
)³]
= 0.85
[ 1 - ( 1 -
)³]
= 0.85
[ 1 - ( 0.393469 )³]
= 0.85
[ 1 - 0.06091 ]
= 0.85
0.9391
= 0.85
= 0.85 / 0.9391
= 0.90512
MTTF = 5 / -ln( 0.90512 )
MTTF = 50.17
Therefore, the MTTF of the transceiver is 50.17