Answer:
0.657 seconds
Explanation:
speed of wave= wavelength / time period
so
time period= wavelength / speed
= 4.6/7
=0.657 sec
Answer:
a = 0,1[m/s^2]
Explanation:
First we need to indentify the initial data.
And using this kinematic equation we have:
![v = 4[m/s]\\v_{0}= 2 [m/s] \\t = 20[s]\\\\v= v_{0}+a*t\\a=\frac{v-v_{0}}{t} \\a= \frac{4-2}{20} \\a=0.1[m/s^{2}]](https://tex.z-dn.net/?f=v%20%3D%204%5Bm%2Fs%5D%5C%5Cv_%7B0%7D%3D%202%20%5Bm%2Fs%5D%20%5C%5Ct%20%3D%2020%5Bs%5D%5C%5C%5C%5Cv%3D%20v_%7B0%7D%2Ba%2At%5C%5Ca%3D%5Cfrac%7Bv-v_%7B0%7D%7D%7Bt%7D%20%5C%5Ca%3D%20%5Cfrac%7B4-2%7D%7B20%7D%20%5C%5Ca%3D0.1%5Bm%2Fs%5E%7B2%7D%5D)
Answer:
It is found that W1 - W2 loss in weight of solid when immersed in water is equal to the weight of the water displaced by the body. This verifies Archimedes' principle.
First, calculate the initial velocity of the dog given with the vertical height and the acceleration due to gravity which is calculated through the equation,
2ad = Vo²
Substituting the known values,
2(9.8 m/s²)(1.2 m) = V₀²
V₀ = 4.85 m/s
The kinetic energy is solved through the equation,
KE = 0.5mv²
Substituting the known values to the latest equation,
KE = 0.5 (7.2 kg)(4.85 m/s)²
KE = 17.46 J
Thus, the kinetic energy is 17.46 J.
Answer:
The speed of the banana just before it hits the water is:
√(2 · g · h) = v
Explanation:
Hi there!
Before Emily throws the banana, its potential energy is:
PE = m · g · h
Where:
PE = potential energy.
m = mass of the banana.
g = acceleration of the banana due to gravity.
h = height of the bridge (distance from the bridge to the ground).
When the banana reaches the water, all its potential energy will have converted to kinetic energy. The equation for kinetic energy is as follows:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass of the banana.
v = speed.
Then, when the banana hits the water:
m · g · h = 1/2 · m · v²
multiply by 2 and divide by m both sides of the equation:
2 · g · h = v²
√(2 · g · h) = v