Answer:
Es creciente en los siguientes intervalos:
Es concavo hacia abajo en el intervalo: 
Es concavo hacia arriba en el intervalo: ![(0,\infty]](https://tex.z-dn.net/?f=%280%2C%5Cinfty%5D)
Step-by-step explanation:
Sea la función:

Para determinar el intervalo de crecimeinto debes determinar la primer derivada de la función (f'(x)). El intervalo donde f'(x) > 0 es creciente.
La derivada de f(x) es:

Entonces es creciente en los siguientes intervalos:
Ahora para determinar la concavidad debemos determinar la segunda derivada de la función (f''(x)). Si f''(x) > 0 la función es concava hacia arriba, si f''(x) < 0 la funcion es concava hacia abajo.
La segunda derivada de f(x) es:
Por lo tanto:
Es concavo hacia abajo en el intervalo: 
Es concavo hacia arriba en el intervalo: ![(0,\infty]](https://tex.z-dn.net/?f=%280%2C%5Cinfty%5D)
Espero te haya ayudado!
Answer:
C) 4x^2 -8x +4[/tex]
Step-by-step explanation:
(-2x+2)^2
we apply (a+b)^2 formula

a= -2x and b= 2
Replace 'a' with -2x and 'b' with 2

(-2x)^2 is 4x^2

option C is the answer
Answer:
38.5 in²
Step-by-step explanation:
Area of circle= πr², where r is the radius
Substitute the value of the radius into the formula above:
Area of circle
= π(3.5)²
= 12.25π
= 38.5 in² (3 s.f.)
Answer:
7. 
8. l=11cm and w=7 cm
9. 
10. 
Step-by-step explanation:
Question 7.
The given expression is:

Expand the parenthesis using the distributive property:

Group similar terms:

Simplify

Divide both sides by -10

Question 8:
Let the width of the rectangle be;
The length of the rectangle is 
The perimeter is given as: 
Given that the perimeter P=36, then:
![36=2[(w+4)+w)]](https://tex.z-dn.net/?f=36%3D2%5B%28w%2B4%29%2Bw%29%5D)

Divide both sides by 2:

Subtract 4 from both sides:



The dimensions of the rectangle is: w=7 cm and l=7+4=11cm
Question 9
Let the number be x.
"5 fewer than the number" is written as 
"5 fewer than a number is at least 12" becomes

Question 10:
Let the number be x.
The quotient of a number and 3 is written as:

The quotient of a number and 3 is no more than 15 is written as;
