1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artemon [7]
2 years ago
5

Mrs. Hales then tells Kyle to write an equation showing that the volume, V, of each of his prisms is equal to l × w × h

Mathematics
1 answer:
nirvana33 [79]2 years ago
3 0

Kindly check the complete version of the question on the picture attached below :

Answer:

B.) 4 * 3 * 3

Step-by-step explanation:

Unit volume of cube = 48 unit³

Using the volume relation :

Volume = Length * width * height

V = l * w * h

To obtain the odd representation, we calculate the volume of the dimensions given in the option and select the option which does not yield a volume of 48 unit³

A.) 8 * 2 * 3 = 48 unit³

B.) 4 * 3 * 3 = 36 unit³

C.) 6 * 2 * 4 = 48 unit³

D.) 3 * 2 * 8 = 48 unit³

Hence, prism with dimension 4 * 3 * 3 cannot be one of Kyle's prism

You might be interested in
For what values of x is f(x) = |x + 1| differentiable? I'm struggling my butt off for this course
pav-90 [236]

By definition of absolute value, you have

f(x) = |x+1| = \begin{cases}x+1&\text{if }x+1\ge0 \\ -(x+1)&\text{if }x+1

or more simply,

f(x) = \begin{cases}x+1&\text{if }x\ge-1\\-x-1&\text{if }x

On their own, each piece is differentiable over their respective domains, except at the point where they split off.

For <em>x</em> > -1, we have

(<em>x</em> + 1)<em>'</em> = 1

while for <em>x</em> < -1,

(-<em>x</em> - 1)<em>'</em> = -1

More concisely,

f'(x) = \begin{cases}1&\text{if }x>-1\\-1&\text{if }x

Note the strict inequalities in the definition of <em>f '(x)</em>.

In order for <em>f(x)</em> to be differentiable at <em>x</em> = -1, the derivative <em>f '(x)</em> must be continuous at <em>x</em> = -1. But this is not the case, because the limits from either side of <em>x</em> = -1 for the derivative do not match:

\displaystyle \lim_{x\to-1^-}f'(x) = \lim_{x\to-1}(-1) = -1

\displaystyle \lim_{x\to-1^+}f'(x) = \lim_{x\to-1}1 = 1

All this to say that <em>f(x)</em> is differentiable everywhere on its domain, <em>except</em> at the point <em>x</em> = -1.

4 0
3 years ago
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
Mr mehra spends 30% of his income in food 10% on charity 25% and is left with 15750 what is his salary? find his savings
nalin [4]

Answer:

Mr mehra's salary is 26250

Step-by-step explanation:

suppose,

Mr mehra's salary is x

so,

He spends in food = 30% of x

                               =(30/100) . x      [x%=x/100]

                                = 30x/100

                                =3x/10

He spends in charity =10% of x

                                    =10x/100

                                    =x/10

Money left = 15750

so,

x = 3x/10 + x/10 +  15750

⇒x - 3x/10 - x/10 = 15750

⇒(10x-3x-x) /10 = 15750

⇒6x/10 = 15750

⇒6x=157500

⇒x = 157500/6

⇒x = 26250

∴Mr mehra's salary is 26250

5 0
3 years ago
Simplify x^2 + (y - 4)^2
Troyanec [42]
X^2 + y^2 - 8y + 16 :)
6 0
3 years ago
Please help algebra 2
Lelechka [254]

Answer:

The expression represents a second degree polynomial with two terms The constant term is 1/8 deleting term is x² and the leading coefficient is 6

7 0
2 years ago
Other questions:
  • What is 3/16 times 3/8? Someone pls help me
    14·2 answers
  • (Please answer quickly)
    8·2 answers
  • Find the equation of the line that is parallel to the given line and passes through the given point. y = −6x + 3; (5, 0) The equ
    9·1 answer
  • Solve the following equation for h.<br> r+3Q/h=t
    15·1 answer
  • PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!! PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!! PLSSS HELPPPP I WILLL GIVE YOU B
    9·1 answer
  • Select the correct answer from each drop-down menu
    10·1 answer
  • The endpoints of one side of a regular pentagon or -1, four and two, three what is the perimeter of the Pentagon
    6·1 answer
  • I forgot to post the actual question LOL my points :')
    13·1 answer
  • Can u plz do this in expanded form 30,459,870
    5·2 answers
  • Can somebody help me pls hurrrry
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!