Answer:
The temperature drop is 61.1 °C
The final specific volume of the refrigerant is 1.236 m^3/kg
Explanation:
Initial pressure of refrigerant = 800 kPa = 800/100 = 8 bar
Final pressure of refrigerant = 140 kPa = 140/100 = 1.4 bar
From steam table
At 8 bar, initial saturated temperature is 170.4 °C
At 1.4 bar, final saturated temperature is 109.3 °C
Temperature drop = initial saturated temperature - final saturated temperature = 170.4 - 109.3 = 61.1 °C
Also, from steam table
At 1.4 bar, specific volume is 1.236 m^3/kg
Final specific volume of the refrigerant is 1.236 m^3/kg
Answer:
distance = 22.57 ft
superelevation rate = 2%
Explanation:
given data
radius = 2,300-ft
lanes width = 12-ft
no of lane = 2
design speed = 65-mph
solution
we get here sufficient sight distance SSD that is express as
SSD = 1.47 ut +
..............1
here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here
so put here value and we get
SSD = 1.47 × 65 ×2.5 +
solve it we get
SSD = 644 ft
so here minimum distance clear from the inside edge of the inside lane is
Ms = Rv ( 1 -
) .....................2
here Rv is = R - one lane width
Rv = 2300 - 6 = 2294 ft
put value in equation 2 we get
Ms = 2294 ( 1 -
)
solve it we get
Ms = 22.57 ft
and
superelevation rate for the curve will be here as
R =
..................3
here f is coefficient of friction that is 0.10
put here value and we get e
2300 = 
solve it we get
e = 2%
Answer:
The problem is that the pumps would consume more energy than the generators would produce.
Explanation:
Water has a potential energy associated with the height it is at. The higher it is, the higher the potential energy. When water flows down into the turbines that energy is converted to kinetic energy and then into electricity.
A pump uses electricity to add energy to the water to send it to a higher potential energy state.
Ideally no net energy woul be hgenerate or lost, because the generators would release the potential energy and pumps would store it again in the water. However the systems are not ideal, everything has an efficiency and losses. The losses would accumulate and the generator would be generating less energy than the pumps consume, so that system wastes energy.
What should be done is closing the floodgates to keep the water up in the dam at night producing only the power that is needed and releasing more water during the day.
Answer:
The correct approach will be "Polymer".
Explanation:
- A polymer, because it has a very broad molecular structure, seems to be a class or kind of organic solid. It is indeed a material consisting of long sequences, or monomers, of simplified components.
- The existence of a large number of monomers which have been mentioned several times seems to be the principal design characteristic of polymeric materials.