Answer:
Q = 62 ( since we are instructed not to include the units in the answer)
Explanation:
Given that:



Q = ???
Now the gas expands at constant pressure until its volume doubles
i.e if 
Using Charles Law; since pressure is constant




mass of He =number of moles of He × molecular weight of He
mass of He = 3 kg × 4
mass of He = 12 kg
mass of Ar =number of moles of Ar × molecular weight of Ar
mass of He = 7 kg × 40
mass of He = 280 kg
Now; the amount of Heat Q transferred = 
From gas table

∴ Q = 
Q = 
Q = 62 MJ
Q = 62 ( since we are instructed not to include the units in the answer)
Answer:
The value of v2 in each case is:
A) V2=3v for only Vs1
B) V2=2v for only Vs2
C) V2=5v for both Vs1 and Vs2
Explanation:
In the attached graphic we draw the currents in the circuit. If we consider only one of the batteries, we can consider the other shorted.
Also, what the problem asks is the value V2 in each case, where:

If we use superposition, we passivate a battery and consider the circuit affected only by the other battery.
In the first case we can use an equivalent resistance between R2 and R3:

And


In the second case we can use an equivalent resistance between R2 and (R1+R4):

And


If we consider both batteries:

Answer:
Electroosmotic velocity will be equal to 
Explanation:
We have given applied voltage v = 100 volt
Length of capillary L = 5 mm = 0.005 m
Zeta potential of the capillary surface 
Dielectric constant of glass is between 5 to 10 here we are taking dielectric constant as 
Viscosity of glass is 
Electroosmotic velocity is given as 

So Electroosmotic velocity will be equal to 