Answer:
How many electrons does an atom require to have a stable configuration?
eight electrons
In general, atoms are most stable, least reactive, when their outermost electron shell is full. Most of the elements important in biology need eight electrons in their outermost shell in order to be stable, and this rule of thumb is known as the octet rule.
How is this achieved in an ionic bond?
Ionic bonds are a class of chemical bonds that result from the exchange of one or more valence electrons from one atom, typically a metal, to another, typically a nonmetal. This electron exchange results in an electrostatic attraction between the two atoms called an ionic bond.
Covalent bonding occurs when pairs of electrons are shared by atoms. Atoms will covalently bond with other atoms in order to gain more stability, which is gained by forming a full electron shell. By sharing their outermost (valence) electrons, atoms can fill up their outer electron shell and gain stability.
Explanation:
Hope this helps! Please don't report me! Have a nice day!
Answer:
Explanation:
A. Using
Sinစ= y/ L = 0.013/2.7= 0.00481
စ=0.28°
B.here we use
Alpha= πsinစa/lambda
= π x (0.0351)sin(0.28)/588E-9m
= 9.1*10^-2rad
C.we use
I(စ)/Im= (sin alpha/alpha) ²
So
{= (sin0.091/0.091)²
= 3*10^-4
Answer:
Before:


After:




Explanation:
<u>Conservation of Momentum</u>
Two objects of masses m1 and m2 moving at speeds v1o and v2o respectively have a total momentum of

After the collision, they have speeds of v1f and v2f and the total momentum is

Impulse J is defined as

Where F is the average impact force and t is the time it lasted
Also, the impulse is equal to the change of momentum

As the total momentum is conserved:


We can compute the speed of the second object by solving the above equation for v2f

The given data is


a) The impulse will be computed at the very end of the answer
b) Before the collision


c) After collision

Compute the car's speed:


And the car's momentum is

The Impulse J of the system is zero because the total momentum is conserved, i.e. \Delta p=0.
We can compute the impulse for each object

The force can be computed as

The force on the car has the same magnitude and opposite sign
My answer is in the picture
Swipe the pictures to see the others