Answer:
the magnitude of the electric force on the projectile is 0.0335N
Explanation:
time of flight t = 2·V·sinθ/g
= (2 * 6.0m/s * sin35º) / 9.8m/s²
= 0.702 s
The body travels for this much time and cover horizontal displacement x from the point of lunch
So, use kinematic equation for horizontal motion
horizontal displacement
x = Vcosθ*t + ½at²
2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²
a = -2.23 m/s²
This is the horizontal acceleration of the object.
Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only
Therefore,the magnitude of the electric force on the projectile will be
F = m*|a|
= 0.015kg * 2.23m/s²
= 0.0335 N
Thus, the magnitude of the electric force on the projectile is 0.0335N
Longitudinal waves transfer energy parallel to the direction of the wave motion
Answer: 12 N to the right
Explanation:
If we calculate the net force acting on the box, we will have:
<u>In y-component:</u>
(1)
Where
is the Normal force, directed upwards and
is the weight of the box (gravity force), directed downwards.
(2)
(3) Hence the net force in the vertical component is zero
<u>In x-component:</u>
(4)
Where
and
(5)
(6) This is the net force in the horizontal component
Therefore, the total net force acting on the box is 12 N directed to the right
Answer: 148348.6239 kg•m/s
Explanation: Firstly, we need to convert the 14700 N into kilograms, and to do so, use the formula net force is equal to mass times acceleration and rearrange the formula to find mass like shown below...
F = ma
F/a = m
14700/9.81 = 1498.470948 kg, this is your mass
Now that we convert it into kilograms, plug all the numbers into the variable of the momentum formula.
Momentum formula is P = mass x velocity
Like this:
P = 1498.470948 x 99
p = 148348.6239 kg•m/s.
I believe that is your answer, hope that helps you even a bit out.
Thanks.
The freezing point of the water is 0 C , and it equals to 273 K
Then, To convert from Kelvins degrees to Celsius degrees we use the relation

Also,
