Answer:
decrease by 2
Step-by-step explanation:
6/3 = 2
6>3, then it must be a decrease
Answer:
x= 5 1/30
Step-by-step explanation:
hope this is fine :)
Remark
The short answer is you multiply 0.6 times the cm/s to get m/min.
Solve
Though you didn't ask for it, here's the way it is done. Notice that each set of brackets cancels the units of a set of brackets to the left of the set of brackets you are observing. This is called unit analysis. The answer is given below.
![\frac{18 cm}{sec} *[\frac{60 cm}{1 min}] * [\frac{1 m}{100 cm}] = 18*0.6\frac{m}{min}=10.8\frac{m}{min}](https://tex.z-dn.net/?f=%20%5Cfrac%7B18%20cm%7D%7Bsec%7D%20%2A%5B%5Cfrac%7B60%20cm%7D%7B1%20min%7D%5D%20%2A%20%5B%5Cfrac%7B1%20m%7D%7B100%20cm%7D%5D%20%3D%2018%2A0.6%5Cfrac%7Bm%7D%7Bmin%7D%3D10.8%5Cfrac%7Bm%7D%7Bmin%7D)
Answer:
see explanation
Step-by-step explanation:
To multiply the vector by a scalar, multiply each of the elements by the scalar.
To add 3 vectors add the corresponding elements of each vector
2a + 3b + 4c
= 2
+ 3
+ 4![\left[\begin{array}{ccc}3\\2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C2%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=
+
+ ![\left[\begin{array}{ccc}12\\8\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D12%5C%5C8%5C%5C%5Cend%7Barray%7D%5Cright%5D)
= ![\left[\begin{array}{ccc}4-12+12\\6+3+8\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4-12%2B12%5C%5C6%2B3%2B8%5C%5C%5Cend%7Barray%7D%5Cright%5D)
= ![\left[\begin{array}{ccc}4\\17\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C17%5C%5C%5Cend%7Barray%7D%5Cright%5D)
First, find the area of the circle using the formula A=pi r^2.
A=pi (2x+3)^2 = pi(4x^2 + 12x + 9)
Second, find the area of the rectangle inside by multiplying the polynomials.
(X+1)*(3x+2) = 3x^2 + 5x +2
Third, subtract the area of the rectangle from the area of the circle to find the area of the shaded region.
pi(4x^2 + 12x + 9) - 3x^2 + 5x +2 =area of shaded region
Or
(pi (2x+3)^2) - ((X+1)(3x+2)) = area of shaded region