Answer:
True
Explanation:
lithium atoms lose one electron each while chlorine atoms gain one electron each
Answer:
See explanation and image attached
Explanation:
Alkenes undergo hydrogenation to give the corresponding alkanes. Where the structure of the original alkene is unknown, we can deduce the structure of the alkene from the structure of the products obtained when it undergoes various chemical reactions.
Now, the fact that we obtained 2-methylhexane upon hydrogenation and the two compounds had different heats of hydrogenation means that the two compounds were geometric isomers. The original compounds must have been cis-2-methyl-3-hexene and trans-2-methyl-3-hexene.
When reacted with HCl, the same compound C7H15Cl is formed because the stereo chemistry is removed.
However, we know that the trans isomer is more stable than the cis isomer hence the cis isomer always has a higher heat of hydrogenation than the trans isomer. Thus X is cis-2-methyl-3-hexene.
Answer: The final pressure is 34.48kPa
Initial Pressure P1 = 55.16kPa
Initial Volume V1 = 0.500L
Final Pressure P2 = ?
Final Volume V2 = 0.800L
Boyle's law P1V1 = P2 V2
P2 = P1V1/V2
P2 = 55.16*0.5/0.8
P2 = 34.48kPa
Answer:
Group 1 and 2 elements
Explanation:
Nitrogen, a non-metal will form ionic bonds with most group 1 and group 2 metals on the periodic table.
How does ionic bonds form?
- They are bonds formed between a highly electronegative specie and one with very low electronegativity.
- As such, ionic bonds forms between metals and non-metals
- In this bond type, the metal due to its electropositive nature will transfer electrons to the non-metals for it to gain.
- The non-metals becomes negatively charged as the metal is positively charged.
- The electrostatic attraction between the two specie leads to the formation of ionic bonds.
Most metals in group 1 and 2 fits in this description. Some of them are calcium, magnesium, lithium, Barium e.t.c.
It mostly favors group 2 metals.