Each element or compound has a molar mass, which is calculated by multiplying the atomic mass of each element by the amount of atoms of that element, and summing the results of each element. The molar mass is measured in g/mol. So you divide the mass in grams by the molar mass to get the amount of moles.
Example:
There are 5g of water.
Calculate the amount of moles.
The water's formula is H2O, so the molar mass of it is

g/mol.
The amount of moles is:
5g ÷ 18g/mol ~ 0.28mol
The organic product formed when 1−hexyne is treated with H₂O, H₂SO₄, and HgSO₄ will be 2-hexanone (structure attached).
This reaction is an example of an oxymercuration reaction of the organic product 1−hexyne.
Oxymercuration is shown in three steps to the right. The nucleophilic double bond attacks the mercury ion, releasing an acetoxy group. The mercury ion's electron pair attacks carbon on the double bond, generating a positive-charged mercuronium ion. Mercury's dxz and 6s orbitals give electrons to the double bond's lowest unoccupied molecular orbitals.
In the second stage, the nucleophilic H₂O attacks the highly modified carbon, freeing its mercury-bonding electrons. Electrons neutralize mercury ions by collapsing. Water molecules have positive-charged oxygen.
In the third stage, the negatively charged acetoxy ion released in the first step attacks the hydrogen of the water group, generating the waste product HOAc. The two electrons in the oxygen-hydrogen link collapse into oxygen, neutralizing its charge and forming alcohol.
You can also learn about organic products from the following question:
brainly.com/question/13513481
#SPJ4
Explanation:
The radial distribution function gives the probability density for an electron to be found anywhere on the surface of a sphere located a distance r from the proton. Since the area of a spherical surface is 4πr2, the radial distribution function is given by 4πr2R(r)∗R(r).
I
Answer:
C
Explanation:
They are stabil and full of valence electron.