Copper (II) Carbonate + Heat yields copper (II) oxide and carbon dioxide
Molecular Equation: CuCo3 + heat > CuO + CO2
Answer:
A) chlorine
Explanation:
To solve this question we can use:
PV = nRT
In order to solve the moles of the gas. With the moles and the mass we can find the molar mass of the gas to have an idea of its identy:
PV = nRT
PV / RT = n
<em>Where P is pressure: 603mmHg * (1atm / 760mmHg) = 0.7934atm</em>
<em>V = 100mL = 0.100L</em>
<em>R is gas constant = 0.082atmL/molK</em>
<em>T is absolute temperature = 14°C + 273.15 = 287.15K</em>
0.7934atm*0.100L / 0.082atmL/molK*287.15K = n
3.37x10⁻³ moles of the gas
In 0.239g. The molar mass is:
0.239g / 3.37x10⁻³ moles = 70.9g/mol
The gas with this molar mass is Chlorine, Cl₂:
<h3>A) chlorine
</h3><h3 />
The molar mass of this equation is 98.04
Answer:
A. Molecules have finite volume.
Explanation:
Gases deviate from the ideal gas law at high pressures because its molecules have a finite volume.
Real gases have a finite volume which enables more interaction between the molecules while ideal gases are assumed not to have a finite volume or occupy space which is why it lacks any form of interaction between its molecules.
This difference is the deviation between the real and ideal gases.
Answer:
Family, Friends, and food?
Explanation:
sorry if its wrong, i did something like this last year, and this was my answer so sorry if its wrong TwT