Answer: 1: B. It will speed up the reaction.
2: A. Increase the concentration of a reactant.
3: A. They act as catalysts.
4: C. A catalyst decreases the activation energy needed for a reaction.
5: D. collision theory.
Explanation: I just took the quiz:)
Answer:
<h3>A Werewolf</h3>
___________
Poem with Compound Words
------------------------------------------
whenever there's a full moon,
I cannot overlook,
some alterations in my ways,
and changes in my look.
my werewolf hair grows everywhere,
my werewolf teeth get long,
my eyesight gets much keener and
I'm muscular and strong.
I get to roam around outside,
the moonlight makes me howl,
these otherworldly sound effects
mean I am on the prawl.
I see the moon is round and full,
I'm moonstruck by the sight,
I've made some telltale changes-so, you'd best stay in tonight.
Explanation:
I HOPE IT HELPS YOUR ENGLISH SUBJECT ;) ★
Absolute zero is the temperature at which the motion of particles that constitute heat will be minimal. The answer is A. It is the lowest temperature that is theoretically possible. It is zero on the kelvin scale, but equivalent to -273.15°C. Hope i helped.
Heating the reaction flask on a hot plate is an example of supplying activation energy to begin a reaction.
Explanation:
<u>Definition:</u>
Activation energy is defined as the minimum amount of energy required to start a particular chemical reaction.
For example: When hydrogen and oxygen are mixed together it does not immediately start the reaction to form water. So, to start the reaction a small electric spark is provided or it is heated to provide some energy. This energy causes the molecules of hydrogen and water to react, thus producing even more molecules to react and finally water is formed.
Here the electric spark or the heat provided is the activation energy.
Answer : The molal freezing point depression constant of X is 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of X liquid (solvent) = 450.0 g
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X= 
i = Van't Hoff factor = 1 (for non-electrolyte)
= molal freezing point depression constant of X = ?
m = molality
Now put all the given values in this formula, we get
![[0.4-(-0.5)]^oC=1\times k_f\times \frac{5.90g\times 1000}{60g/mol\times 450.0g}](https://tex.z-dn.net/?f=%5B0.4-%28-0.5%29%5D%5EoC%3D1%5Ctimes%20k_f%5Ctimes%20%5Cfrac%7B5.90g%5Ctimes%201000%7D%7B60g%2Fmol%5Ctimes%20450.0g%7D)

Therefore, the molal freezing point depression constant of X is 