When vinegar, an acid, is mixed with baking soda, a base, the reaction is similar to the reaction of Alka-Seltzer and water; a salt, water and carbon dioxide are produced.
7. (150 cal)/(3/4 serving) = 150/1 / 3/4 = 150/1 * 4/3 = 200 cal/serving
Answer:
4x +y = 3
Step-by-step explanation:
Perpendicular lines have slopes that are the negative reciprocals of one another. When the equation of the line is written in standard form like this, the equation of the perpendicular line can be written by swapping the x- and y-coefficients and negating one of them. Doing this much would give you ...
4x +y = (constant)
Note that we have chosen to make the equation read 4x+y, not -4x-y. The reason is that "standard form" requires the leading coefficient to be positive.
Now, you just need to make sure the constant is appropriate for the point you want the line to go through. So, it needs to be ...
4(2) +(-5) = constant = 3
The line of interest has equation ...
4x + y = 3
Options :
A. The initial number of bacteria is 7.
B. The initial of bacteria decreases at a rate of 93% each day.
C. The number of bacteria increases at a rate of 7% each day.
D. The number of bacteria at the end of one day is 360.
Answer:
C. The number of bacteria increases at a rate of 7% each day.
Step-by-step explanation:
Given the function :
f(x)=360(1.07)^x ; Number of bacteria in sample at the end of x days :
The function above represents an exponential growth function :
With the general form ; Ab^x
Where A = initial amount ;
b = growth rate
x = time
For the function :
A = initial amount of bacteria = 360
b = growth rate = (1 + r) = 1.07
If ; (1 + r) = 1.07 ; we can solve for r to obtain the daily growth rate ;
1 + r = 1.07
r = 1.07 - 1
r = 0.07
r as a percentage ;
0.07 * 100% = 7%
Answer:
Equation Form: x=−2,y=−2
Step-by-step explanation:
Eliminate the equal sides of each equation and combine.
3/2x+1=−x−4
Solve 3/2x+1=−x−4
for x. x=−2
Evaluate y when x=−2.
y=−2
The solution to the system is the complete set of ordered pairs that are valid solutions.
(−2,−2)
The result can be shown in multiple forms.
Point Form:
(−2,−2)
Equation Form:
x=−2,y=−2