V=0 v²=0, A=v-u/t. T=v-u/a. T= 0-9.32/-4.06 therefore time = 2.296 seconds
That is the mst best eway to find its solution.
37.4/2.2*10^3 = 0.017 gm/liter or 1.7*10^-2
so we conclude that option b is sorrect
Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
Answer: it depends on the mass of the pendulum or on the size of the arc through which it swings.
Explanation: