The net force on the system:
F = m₂g - m₁gsin(∅)
F = 39.5 x 9.81 - 43 x 9.81 x sin(30)
F = 176.58 N
Now, we use F = ma to find the acceleration on each mass.
F = m₁a₁
a₁ = 176.58 / 43
a₁ = 4.11 m/s²
F = m₂a₂
a₂ = 176.58 / 39.5
a₂ = 4.47 m/s²
Answer: 
Explanation:
The <u>Heisenberg uncertainty principle</u> postulates that the fact each particle has a wave associated with it, imposes restrictions on the ability to determine its position and speed at the same time.
In other words:
It is impossible to measure simultaneously (according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle. Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
Mathematically this principle is written as:
(1)
Where:
is the uncertainty in the position of the electron
is the Planck constant
is the mass of the electron
is the uncertainty in the velocity of the electron.
If we know the accuracy of the velocity is
of the velocity of the electron
, then
is:


(2)
Now, the least possible uncertainty in position
is:
(3)
(4)
Finally:
Is it a magnifying glass?
Groups and periods are two ways of categorizing elements in the periodic table. Periods are horizontal rows (across) the periodic table, while groups are vertical columns (down) the table. Atomic number increases as you move down a group or across a period.
If you are American which I'm assuming you are because I'm australian and our our overtaking lane is the right but anyway,
(c) would be the Answer because (a) and (b) are Dangerous and note the use of language for (c) and how it says safely. It means that (c) is your best bet.
Do your best!<span />