Answer:
v1 = 15.90 m/s
v2 = 8.46 m/s
mechanical energy before collision = 32.4 J
mechanical energy after collision = 32.433 J
Explanation:
given data
mass m = 0.2 kg
speed = 18 m/s
angle = 28°
to find out
final velocity and mechanical energy both before and after the collision
solution
we know that conservation of momentum remain same so in x direction
mv = mv1 cosθ + mv2cosθ
put here value
0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)
3.6 = 0.1765 V1 + 0.09389 v2 ................1
and
in y axis
mv = mv1 sinθ - mv2sinθ
0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)
0 = 0.09389 v1 - 0.1768 v2 .......................2
from equation 1 and 2
v1 = 15.90 m/s
v2 = 8.46 m/s
so
mechanical energy before collision = 1/2 mv1² + 1/2 mv2²
mechanical energy before collision = 1/2 (0.2)(18)² + 0
mechanical energy before collision = 32.4 J
and
mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²
mechanical energy after collision = 32.433 J
Answer:
Their speed in a vacuum is a constant value.
Explanation:
Electromagnetic waves consits of oscillations of electric field and magnetic field. The oscillations of these fields occur in a direction perpendicular to the direction of propagation of the waves, so they are transverse wave. Electromagnetic waves, contrary to mechanical waves, do not need a medium to propagate, so they can also travel through a vacuum. In a vacuum, their speed is constant and has always the same value, the speed of light:

The best and most correct answer among the choices provided by the question is decreases <span>.
</span>The potential energy of the object <span>decreases.</span>
Hope my answer would be a great help for you.
If you have more questions feel free to ask here at Brainly.
(2)(3)(2)=12⇒ D=M/V ⇒ D=94/12=7.8333(repeated) g/m³