We will need to see what the picture looks like post the picture of the molecule
When aluminum metal is made to contact with chlorine gas (Cl₂), a highly exothermic reaction proceeds. This produces aluminum chloride (AlCl₃) powder. The balanced chemical equation for this reaction is shown below:
2Al(s) + 3Cl₂(g) → 2AlCl₃(s)
Since it was stated that aluminum is in excess, this means that the amount of AlCl₃ produced will only depend on the amount of Cl₂ gas available. The molar mass of Cl₂ is 70.906 g/mol. Using stoichiometry, we have the following equation:
(21.0 g Cl₂/ 70.906 g/mol Cl₂) x 2 mol AlCl₃/ 2 mol Cl₂ = 0.1974 mol AlCl₃
Thus, we have determined that 0.1974 <span>moles of aluminum chloride can be produced from 21.0 g of chlorine gas. </span>
To find the number of moles from a mass given, simply look to the formula n (moles) = m (mass, g) / MM (molar mass).
Mass was given, 36.04
Molar mass is the total atomic mass of all the atoms present. Water is H20, so that means 2 hydrogen and 1 oxygen. The atomic mass of hydrogen is 1 and atomic mass of oxygen is 16. Therefore MM= 1 + 1 + 16= 18.
Plug that value in and the full equation is
n = 36.04/18
n = 2.002 moles
= 2 moles
Answer:
The correct answer is density. See the explanation below, please.
Explanation:
Roland measured density, which is a property that relates mass to volume, having units for example: grams / cm3