Answer:
A
Step-by-step explanation:
use s=r0
but first convert 360 degree to radian
you will get 6.284 radian
then you substitute and get the answer!
12= r (6.284)
r= 1.91 cm
Answer:
the least cookies someone can buy from one person is 6
Step-by-step explanation:
Answer:
The minimum sample size is 
Step-by-step explanation:
From the question we are told that
The confidence interval is 
The margin of error is 
Generally the sample proportion can be mathematically evaluated as



Given that the confidence level is 98% then the level of significance can be mathematically evaluated as



Next we obtain the critical value of
from the normal distribution table
The value is

Generally the minimum sample size is evaluated as
![n =[ \frac { Z_{\frac{\alpha }{2} }}{E} ]^2 * \r p (1- \r p )](https://tex.z-dn.net/?f=n%20%20%3D%5B%20%5Cfrac%20%7B%20Z_%7B%5Cfrac%7B%5Calpha%20%7D%7B2%7D%20%7D%7D%7BE%7D%20%5D%5E2%20%2A%20%20%5Cr%20p%20%281-%20%5Cr%20p%20%29)
![n =[ \frac { 2.33}{0.1} ]^2 * 0.475(1- 0.475 )](https://tex.z-dn.net/?f=n%20%20%3D%5B%20%5Cfrac%20%7B%202.33%7D%7B0.1%7D%20%5D%5E2%20%2A%20%200.475%281-%200.475%20%29)

Answer:
Step-by-step explanation:
given that we are interested in finding out the proportion of adults in the United State who cannot cover a $400 unexpected expense without borrowing money or going into debt.
Sample size = 765
Favour = 322
a) The population is the adults in the United State who cannot cover a $400 unexpected expense without borrowing money or going into debt
b) The parameter being estimated is the population proportion P of adults in the United State who cannot cover a $400 unexpected expense without borrowing money or going into debt.
c) point estimate for proportion = sample proporiton = 
d) We can use test statistic here as for proportions we have population std deviation known.
d) Std error = 0.01785(
Test statistic Z = p difference / std error
f) when estimated p is 0.50 we get Z = -4.43
g) Is true population value was 40% then
Z = 1.17 (because proportion difference changes here)