Answer:
FALSE
Step-by-step explanation:
The central limit theorem tell us that for a random sample of size n, the average of the sample will be approximately normally distributed with mean
and variance
, where
and
are the mean a variance respectively of the sampling distribution. This always that the mean and the variance are both finite and the sample size n is greater than 30. We could use the central limit theorem, but in this case does not help us because we are considering 25 randomly selected data values, besides, we do not know the distribution of the original population.
length, l width, w
perimeter, p = 2(l+w)...eqn 1
l = w -16...eqn 2
subst for l in eqn 2 into eqn 1...
p = 2((w-16) + w)
p = 4w -32
using p = 96, 96 = 4w -32, w = 32 inches
l = w- 16 = 16inches
(8, 11) is the correct solution. x = 8, y = 11
Plug it in:
11-8=3
That's correct.
The answer is 1.27777778 (:
It would be B because eaxh section either repeats itself or is close to repeating its previous part