Answer:
The acceleration of the sliding toboggan is, a = 4.9 m/s²
Explanation:
Given data,
The total weight of the toboggan, W = 1300 N
The slope is, Ф = 30°
The acceleration of a body under the influence of the gravitational field does not depend on its mass, size and shape in the absence of the air resistance.
Therefore,
The acceleration of the toboggan is given by the formula,
a = g Sin Ф
Substituting the given values in the above equation,
a = 9.8 x Sin 30°
= 4.9 m/s²
Hence, the acceleration of the sliding toboggan is, a = 4.9 m/s²
Answer:
B: precipitation seeping through pores and cracks in the ground
Explanation:
Man made wells aren't the main source because their isn't enough of them and morning dew doesn't go in to the ground in one main source.
Answer:
A force that pushes or pulls is known as Newton's third law of Motion.
Explanation:
Newton's Third Law of Motion. Newton's Third Law of Motion states that for each action, there's an equal and opposite reaction. What this suggests is that pushing on an object causes that object to keep off against you, the precise same amount, but within the other way.
To determine the object which could give the greatest impact we will apply the concept of momentum. The object that has the highest momentum will be the object that will impact the strongest. Our values are
Mass of Object A

Velocity of object A

Mass of object B

Velocity of object B

The general formula for momentum is the product between mass and velocity, then

For each object we have then,


Since the momentum of object A is greater than that of object B, then object A will make you feel force upon impact.