1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
2 years ago
8

Define electric field intensity​

Physics
1 answer:
Nimfa-mama [501]2 years ago
5 0

Answer:

Electric field intensity is a Vector Field. Electric field intensity (E, N/C or V/m) is a vector field that quantifies the force experienced by a charged particle due to the influence of charge not associated with that particle

Explanation:

You might be interested in
A jet transport has a weight of 2.25 x 106 N and is at rest on the runway. The two rear wheels are 16.0 m behind the front wheel
Rudik [331]

Answer:

Explanation:

Given that,

Weight of jet

W = 2.25 × 10^6 N

It is at rest on the run way.

Two rear wheels are 16m behind the front wheel

Center of gravity of plane 10.6m behind the front wheel

A. Normal force entered on the ground by front wheel.

Taking moment about the the about the real wheel.

Check attachment for better understanding

So,

Clock wise moment = anti-clockwise moment

W × 5.4 = N × 16

2.25 × 10^6 × 5.4 = 16•N

N = 2.25 × 10^6 × 5.4 / 16

N = 7.594 × 10^5 N

B. Normal force on each of the rear two wheels.

Using the second principle of equilibrium body.

Let the rear wheel normal be Nr and note, the are two real wheels, then, there will be two normal forces

ΣFy = 0

Nr + Nr + N — W = 0

2•Nr = W—N

2•Nr = 2.25 × 10^6 — 7.594 × 10^5

2•Nr = 1.491 × 10^6

Nr = 1.491 × 10^6 / 2

Nr = 7.453 × 10^5 N

6 0
3 years ago
As a result of photosynthesis is the production of sugar molecules known as what?
Bezzdna [24]

Answer:

Glucose

Explanation:

4 0
2 years ago
Read 2 more answers
A 4.33 kg cat has 41.7 J of KE How fast is the cat moving?
balandron [24]

Answer:

The answer to your question is:

Explanation:

Data

mass = 4.33 kg

E = 41.7 J

v = ?

Formula

Ke = (1/2)mv²

Clear v from the equation

v = √2ke/m

Substitution

v = √2(41.7)/4.33

v = 19.26 m/s          Result

7 0
3 years ago
efrigerant-134a is expanded isentropically from 600 kPa and 70°C at the inlet of a steady-flow turbine to 100 kPa at the outlet.
PolarNik [594]

Answer:

Inlet : v_i=0.0646\frac{m}{s}

Outlet:  v_o=0.171\frac{m}{s}

Explanation:

1) Notation and important concepts

Flow of mass represent "the mass of a substance which passes per unit of time".

Flow rate represent "a measure of the volume of liquid that moves in a certain amount of time"

Specific volume is "the ratio of the substance's volume to its mass. It is the reciprocal of density."

Isentropic process is a "thermodynamic process, in which the entropy of the fluid or gas remains constant".

We know that the flow of mass is given by the following expression

\dot{m}=\frac{\dot{V}}{\upsilon}, where \dot{V} represent the flow rate and \upsilon the specific volume at the pressure and temperature given.

A_i=0.5m^2 is the inlet area

P_i=600Kpa pressure at the inlet area

T_i=70C temperature at the inlet area

A_o=1m^2 is the outlet area

P_o=100Kpa pressure at the outlet area

T_o=C temperature at the outlet area

\dot{m}=0.75\frac{kg}{s} represent the flow of mass

If we look at the first figure attached Table A-13 we see that the specific volume for the inlet condition is

\upsilon_i =0.04304\frac{kg}{m^3} and the entropy is h_i=1.0645\frac{KJ}{KgK}=h_o

With the value of entropy and the outlet pressure of 100 Kpa we can find we specific volume at the outlet condition since w ehave the entropy h_o=1.0645\frac{KJ}{KgK}

Since on the table we don't have the exact value we need to interpolate between these two values (see the second figure attached)

h_1=1.0531\frac{KJ}{KgK} , \upsilon_1=0.22473\frac{kg}{m^3}

h_2=1.0829\frac{KJ}{KgK} , \upsilon_2=0.23349\frac{kg}{m^3}

Our interest value would be given using interpolation like this:

\upsilon=0.22473+\frac{(0.23349-0.22473)}{(1.0829-1.0531)}(1.0645-1.0531)=0.228\frac{kg}{m^3}

2) Solution to the problem

Now since we have all the info required to solve the problem we can find the velocities on this way.

We know from the definition of flow of mass that \dot{m}=\frac{\dot{V}}{\upsilon}, but since \dot{V}=Av we have this:

\dot{m}=\frac{Av}{\upsilon}

If we solve from the velocity v we have this:

v=\frac{\upsilon \dot{m}}{A}   (*)

And now we just need to replace the values into equation (*)

For the inlet case:

v_i=\frac{\upsilon_i \dot{m}}{A_i}=\frac{0.043069\frac{kg}{m^3}(0.75\frac{kg}{s})}{0.5m^2}=0.0646\frac{m}{s}

For the oulet case:

v_o=\frac{\upsilon_o \dot{m}}{A_o}=\frac{0.228\frac{kg}{m^3}(0.75\frac{kg}{s})}{1m^2}=0.171\frac{m}{s}

7 0
3 years ago
A cyclist accelerates from a velocity of 10 miles/hour east until reaching a velocity of 20 miles/hour east in 5 seconds. What w
Sliva [168]

Answer:

a = 0.894\ m/s^2

Explanation:

<u>Motion with Constant Acceleration</u>

A body moves with constant acceleration when the speed changes uniformly in time. The equation used to find the final speed vf is

v_f=v_o+at

Where vo is the initial speed, a is the acceleration, and t is the time.

The cyclist has an initial speed of vo=10 miles/hour and ends up at vf=20 miles/hour in t=5 seconds.

Both speeds are given in miles/hour and we must convert it to m/s:

1 mile/hour = 0.44704 m/s

10 mile/hour = 4.47 m/s

20 mile/hour = 8.94 m/s

The acceleration is calculated by solving for a:

\displaystyle a=\frac{v_f-v_o}{t}

\displaystyle a=\frac{8.94-4.47}{5}

a = 0.894\ m/s^2

3 0
2 years ago
Other questions:
  • What are ways to stop erosion? and what are are benefits and downfalls to that method?
    11·1 answer
  • While flying over the grand canyon the pilot
    9·1 answer
  • The transfer of energy by the movement of particles that are in contact with each other
    10·2 answers
  • What is flens, the focal length of the lens? if the lens is converging flens is positive. it the lens is diverging, flens is neg
    15·1 answer
  • Which of the following describes an electric fan?
    9·1 answer
  • Planets in our solar system do not revolve around the sun in perfect circles. Their orbits are more like ovals. Which term do sc
    6·1 answer
  • The cheetah is one of the fastest-accelerating animals, because it can go from rest to 16.2 m/s (about 36 mi/h) in 2.4 s. If its
    7·1 answer
  • What happens to the induced electric current if the number of loops is increased from one to three?
    8·1 answer
  • A boy pushes a 50 kilogram wagon with a force of 4 N east while an orangutan pushes the wagon
    5·1 answer
  • What happens to water when it changes to ice?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!