Answer:
(a) FN = m (g -
)
(b) vmin = 17.146 m/s
Explanation:
The radius of the arc is
r = 30m
The normal force acting on the car form the highest point is
FN = m (g -
)
If the normal force become 0 we have
m (g -
) = 0
or
g -
= 0
This way, when FN = 0, then v = vmin, so
g -
= 0
vmin =
= ![\sqrt[.]{9.8 m/s^{2} * 30m } = 17.146 m/s](https://tex.z-dn.net/?f=%5Csqrt%5B.%5D%7B9.8%20m%2Fs%5E%7B2%7D%20%2A%2030m%20%7D%20%3D%2017.146%20m%2Fs)
Answer:
C)The Same
Explanation:
Kinematics equation:

for both cases the initial velocity in the axis Y is the same, equal a zero.
So the relation between the height ant temps is the same for both cases (the horizontal velocity does not play a role)
C)The Same
Explanation:
Speed of the marathon runner, v = 9.51 mi/hr
Distance covered by the runner, d = 26.220 mile
Let t is the time taken by the marathon runner. We know that the speed of the runner is given by total distance divided by total time taken. Mathematically, it is given by :



t = 2.75 hours
Since, 1 hour = 60 minutes
t = 165 minutes
Since, 1 minute = 60 seconds
t = 9900 seconds
Hence, this is the required solution.