That's what stars do all the time.
For example, in the sun (and MOST other stars), deep down in the center
of the sun's core, two atoms of Hydrogen get squashed together so hard
that they blend into one atom of Helium AND release some energy.
That's where the sun's energy all comes from. It's called "nuclear fusion".
It needs tremendous temperature and pressure to happen. We know how
to do it, but we can't control it. So far, the only thing we've ever been able
to use it for is Hydrogen bombs.
There are 92 elements on the Periodic Table that are found in nature,
plus another 20 or so that have been made in the laboratory, but only
a few atoms of them.
Average speed = distance / time
Average speed = 90 km / 0.5 hrs
Average speed = 180 km per hour
The medium is the component of communication through which information is transferred. The correct option in the given question is option "c". Medium is actually the means through which communication is done. It can be a an oral message or written message or it can be nonverbal or symbolic. Any kind of message transmission requires a medium and without an medium no message can be transmitted. Whenever people talk on the telephone or write a letter, there has to be a medium for transmitting the message to the person on the other side.
Answer:
- The work made by the gas is 7475.69 joules
- The heat absorbed is 7475.69 joules
Explanation:
<h3>
Work</h3>
We know that the differential work made by the gas its defined as:

We can solve this by integration:

but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law


This give us

As n, R and T are constants

![\Delta W= \ n \ R \ T \left [ ln (V) \right ]^{v_2}_{v_1}](https://tex.z-dn.net/?f=%20%5CDelta%20W%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20%5Cleft%20%5B%20ln%20%28V%29%20%5Cright%20%5D%5E%7Bv_2%7D_%7Bv_1%7D%20)



But the volume is:



Now, lets use the value from the problem.
The temperature its:

The ideal gas constant:

So:


<h3>Heat</h3>
We know that, for an ideal gas, the energy is:

where
its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.
By the first law of thermodynamics, we know

where
is the Work made by the gas (please, be careful with this sign convention, its not always the same.)
So:

