Answer:
a. stay the same for very long
Explanation:
It is rare for any motion to stay the same for a very long time. The force applied on a body causes changes in the magnitude of motion.
- For motion to remain constant, there must not be a net force acting on the body
- All the forces on the body must be balanced.
- This is very hard to come by.
- Motion changes very frequently.
Answer:
a = 1.5*10^-3 m/s^2
x = 0.033m = 3.3cm
Explanation:
To calculate the acceleration and the distance traveled by the car you use the following formulas:
(1)
(2)
v: final velocity = 0,255 km/h
vo: initial velocity = 0 m/s
t: time = 3/4 min
a: acceleration = ?
x: distance
In order to use the equations (1) and (2) you first convert the units of the final velocity to m/s, and the time to seconds.

Next, you solve the equation (1) for the acceleration a:

With this value of a you can calculate the distance traveled by the car, by using the equation (2):

hence, the acceleration of the car is 1.5*10^-3 m/s^2 and the distance traveled in 3/4 min is 0.033m
Answer:
In the United States,cell carrier services are often considered to be a part of an oligopoly
Explanation:
Cell carrier services are a brand value and imagine