Answer:
Alloy, metallic substance composed of two or more elements, as either a compound or a solution. The components of alloys are ordinarily themselves metals, though carbon, a nonmetal, is an essential constituent of steel.
Explanation:
Alloys are usually produced by melting the mixture of ingredients. The value of alloys was discovered in very ancient times; brass (copper and zinc) and bronze (copper and tin) were especially important. Today, the most important are the alloy steels, broadly defined as steels containing significant amounts of elements other than iron and carbon. The principal alloying elements for steel are chromium, nickel, manganese, molybdenum, silicon, tungsten, vanadium, and boron have a wide range of special properties, such as hardness, toughness, corrosion resistance, magnetizability, and ductility. Nonferrous alloys, mainly copper–nickel, bronze, and aluminum alloys, are much used in coinage. The distinction between an alloying metal and an impurity is sometimes subtle; in aluminum, for example, silicon may be considered an impurity or a valuable component, depending on the application, because silicon adds strength though it reduces corrosion resistance.
Answer: Around 364 to 480
206Pb = 1.342 x10^22 atoms
<span>To find the number of atoms, you must first find the number of moles. If 238U is 238.029g/mol, and we have 1.75 grams, how many moles is that? 1.75 divided by 238.029 = 0.007352045 moles. To find the number of atoms in 0.007352045 moles, you multiply by a mole: </span>
<span>0.007352045 x 6.02 x 10^23 = 4.426 x10^21 atoms. </span>
<span>Same procedure for 206Pb: </span>
<span>4.59 divided by 205.97446 = 0.022284316 moles </span>
<span>0.022284316 x 6.02 x 10^23 = 1.342 x10^22 atoms. </span>
<span>Hope that helps you!
https://answers.yahoo.com/question/index?qid=20100331153014AAoMXcu
</span>
Answer:
I = 0.287 MR²
Explanation:
given,
height of the object = 3.5 m
initial velocity = 0 m/s
final velocity = 7.3 m/s
moment of inertia = ?
Using total conservation of mechanical energy
change in potential energy will be equal to change in KE (rotational) and KE(transnational)
PE = KE(transnational) + KE (rotational)

v = r ω




I = 0.287 MR²
- Pressure = 5000 Pa
- Contact Area = 0.04 m^2
- Acceleration due to gravity = 9.8 m/s^2
- Let the force be F.
- We know, Force = Pressure × Contact Area
- Therefore, Force = 5000 Pa × 0.04 m/s^2
- or, Force = 200 N
- We know, force = mass × acceleration
- Therefore, mass = force ÷ acceleration
- or, mass = 200 N ÷ 9.8 m/s^2 = 20.4 Kg
<u>Answer</u><u>:</u>
<u>2</u><u>0</u><u>.</u><u>4</u><u> </u><u>Kg</u>
Hope you could understand.
If you have any query, feel free to ask.