Protons and neutrons are packed together in a very small region called nucleus. Protons are positively charged and we know that like charges repel. Then how is it that protons are not repelling each other and flying away from nucleus?
You may think that gravitational force is holding all the protons together but it is not so. Gravitational force is many times weaker than repulsive force.
It is actually strong force which holds proton together. At this short distance, strong force comes into play and is several times stronger than the repulsive force.
1 mole = 18 g
200 g = glass of water
200 ÷ 18 = 11.1
11.1 moles of water in 200 g (glass of water)
Answer:
(a) 0.063 m/s
(b) 1.01 m/s
Explanation:
rate of volume flow, V = 4 x 10^-6 m^3/s
(a) radius, r = 4.5 x 10^-3 m
Let the speed of blood is v.
So, V = A x v
where A be the area of crossection of artery
4 x 10^-6 = 3.14 x 4.5 x 10^-3 x 4.5 x 10^-3 x v
v = 0.063 m/s
Thus, the speed of flow of blood is 0.063 m/s .
(b) Now r' = r / 4 = 4.5 /4 x 10^-3 m = 1.125 x 10^-3 m
Let the speed is v'.
So, V = A' x v'
4 x 10^-6 = 3.14 x 1.125 x 10^-3 x 1.125 x 10^-3 x v'
v' = 1.01 m/s
Thus, the speed of flow of blood is 1.01 m/s .
Gravitational potential energy<span> is </span>energy<span> an object possesses because of its position in a </span>gravitational<span> field. The most common use of </span>gravitational potential energy<span> is for an object near the surface of the Earth where the </span>gravitational<span> acceleration can be assumed to be constant at about 9.8 m/s</span>2<span>.</span>
Answer:
lift per meter of span = 702 N/m
Explanation:
See attached pictures.