Answer:
Thus, any projectile that has an initial vertical velocity of 21.2 m/s and lands 10.0 m below its starting altitude spends 3.79 s in the air.The initial vertical velocity is the vertical component of the initial velocity: v 0 y = v 0 sin θ 0 = ( 30.0 m / s ) sin 45 ° = 21.2 m / s .
D. 289
Take the formula:
K=5/9(Fahrenheit-32)+273
Plug in Fahrenheit
K=5/9 (60-32)+273
From here it is simple math and you can plug it into your calculator getting 288.5555556 and round to 289
Answer:
The inside Pressure of the tank is 
Solution:
As per the question:
Volume of tank, 
The capacity of tank, 
Temperature, T' =
= 299.8 K
Temperature, T =
= 288.2 K
Now, from the eqn:
PV = nRT (1)
Volume of the gas in the container is constant.
V = V'
Similarly,
P'V' = n'RT' (2)
Also,
The amount of gas is double of the first case in the cylinder then:
n' = 2n
![\]frac{n'}{n} = 2](https://tex.z-dn.net/?f=%5C%5Dfrac%7Bn%27%7D%7Bn%7D%20%3D%202)
where
n and n' are the no. of moles
Now, from eqn (1) and (2):


Answer:
x_total = (A + B) cos (wt + Ф)
we have the sum of the two waves in a phase movement
Explanation:
In this case we can see that the first boy Max when he enters the trampoline and jumps creates a harmonic movement, with a given frequency. When the second boy Jimmy enters the trampoline and begins to jump he also creates a harmonic movement. If the frequency of the two movements is the same and they are in phase we have a resonant process, where the amplitude of the movement increases significantly.
Max
x₁ = A cos (wt + Ф)
Jimmy
x₂ = B cos (wt + Ф)
total movement
x_total = (A + B) cos (wt + Ф)
Therefore we have the sum of the two waves in a phase movement