negative acceleration- deceleration
6 meters is left because you subtract 12 meters from 6
Answer:
0.015 atm
Explanation:
The pressure of the gas can be calculated using Ideal Gas Law:

<u>Where:</u>
n: is the number of moles of the gas
R: is the gas constant = 0.082 L*atm/(K*mol)
V: is the volume of the container = 1.64 L
T: is the temperature
We need to find the number of moles and the temperature. The number of moles is:

<u>Where:</u>
M: is the molar mass of the N₂ = 14.007 g/mol*2 = 28.014 g/mol
m: is the mass of the gas = 0.226 g

Now, the temperature can be found using the following equation:
<u>Where:</u>
R: is the gas constant = 0.082 L*atm/K*mol = 8.314 J/K*mol
: is the root-mean-square speed of the gas = 182 m/s
By solving the above equation for T, we have:
Finally, we can find the pressure of the gas:

Therefore, the pressure of the gas is 0.015 atm.
I hope it helps you!
Answer:
Time taken to reach final velocity = 5.5 second
Explanation:
Given:
Initial velocity (Starting from rest)(u) = 0 m/s
Acceleration of ball (a) = 1 m/s²
Final velocity (v) = 5.5 m/s
Find:
Time taken to reach final velocity
Computation:
Using first equation of motion;
v = u + at
where,
v = final velocity
u = initial velocity
a = acceleration
t = time taken
5.5 = 0 + (1)(t)
5.5 = t
Time taken to reach final velocity = 5.5 second
Gyroscopic wander can be divided into two categories and these are:
- Drift
- Topple
<h3>What is
gyroscopic wander?</h3>
Gyroscopic wander can be defined as a movement of the spin axis (axis of rotation) away from a specific fixed direction.
Based on scientific information and records, there are two main types of gyroscopic wander and these include the following:
Read more on gyroscopic wander here: brainly.com/question/12168194
#SPJ12