1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
2 years ago
7

a force 4000 n accelerates a car of mass 800 kg from rest to 20 ms how far does the car travel while the force is acting?​

Physics
1 answer:
Neko [114]2 years ago
4 0

Answer:

d = 40 m

Explanation:

Given that,

Force, F = 4000 N

Mass of a car, m = 800 kg

Initial velocity, u = 0 (at rest)

Final velocity, v = 20 m/s

We need to find the distance traveled. Force acting on a car is given by :

F = ma

Where

a is the acceleration of the car.

a=\dfrac{F}{m}\\\\a=\dfrac{4000}{800}\\\\a=5\ m/s^2

Let it has traveled d distance. Using third equation of motion.

v^2-u^2=2ad\\\\d=\dfrac{v^2-u^2}{2a}\\\\d=\dfrac{(20)^2-(0)^2}{2\times 5}\\\\d=40\ m

So, the required distance is equal to 40 m.

You might be interested in
If the electric potential at a point in space is zero, then the electric field at that point is:
icang [17]
E - impossible to determine based on the given information
4 0
2 years ago
which planet should punch travel to if his goal is to weigh in at 118 lb? refer to the table of planetary masses and radii given
Harrizon [31]

The planet that Punch should travel to in order to weigh 118 lb is Pentune.

<h3 /><h3 /><h3>The given parameters:</h3>
  • Weight of Punch on Earth = 236 lb
  • Desired weight = 118 lb

The mass of Punch will be constant in every planet;

W = mg\\\\m = \frac{W}{g}\\\\m = \frac{236}{g}

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

F = mg = \frac{GmM}{R^2} \\\\g = \frac{GM}{R^2}

where;

  • M is the mass of Earth = 5.972 x 10²⁴ kg
  • R is the Radius of Earth = 6,371 km

For Planet Tehar;

g_T =\frac{G \times 2.1M}{(0.8R)^2} \\\\g_T = 3.28(\frac{GM}{R^2} )\\\\g_T = 3.28 g

For planet Loput:

g_L =\frac{G \times 5.6M}{(1.7R)^2} \\\\g_L = 1.94(\frac{GM}{R^2} )\\\\g_L = 1.94g

For planet Cremury:

g_C =\frac{G \times 0.36M}{(0.3R)^2} \\\\g_C = 4(\frac{GM}{R^2} )\\\\g_C = 4 g

For Planet Suven:

g_s =\frac{G \times 12M}{(2.8R)^2} \\\\g_s = 1.53(\frac{GM}{R^2} )\\\\g_s = 1.53 g

For Planet Pentune;

g_P =\frac{G \times 8.3 }{(4.1R)^2} \\\\g_P = 0.5(\frac{GM}{R^2} )\\\\g_P = 0.5 g

For Planet Rams;

g_R =\frac{G \times 9.3M}{(4R)^2} \\\\g_R = 0.58(\frac{GM}{R^2} )\\\\g_R = 0.58 g

The weight Punch on Each Planet at a constant mass is calculated as follows;

W = mg\\\\W_T = mg_T\\\\W_T = \frac{236}{g} \times 3.28g = 774.08 \ lb\\\\W_L = \frac{236}{g} \times 1.94g =457.84 \ lb\\\\ W_C = \frac{236}{g}\times 4g = 944 \ lb \\\\ W_S = \frac{236}{g} \times 1.53g = 361.08 \ lb\\\\W_P = \frac{236}{g} \times 0.5 g = 118 \ lb\\\\W_R = \frac{236}{g} \times 0.58 g = 136.88 \ lb

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.

<u>The </u><u>complete question</u><u> is below</u>:

Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.

Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).

<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>

Learn more about effect of gravity on weight here: brainly.com/question/3908593

5 0
2 years ago
A car moving with an initial speed v collides with a second stationary car that is one-half as massive. After the collision the
Mashutka [201]

Answer:

4v/3

Explanation:

Assume elastic collision by the law of momentum conservation:

m_1v = m_1v_1 + m_2v_2

where v is the original speed of car 1, v1 is the final speed of car 1 and v2 is final speed of car 2. m1 and m2 are masses of car 1 and car 2, respectively

Substitute m_2 = m_1/2 \& v_1 = v/3

m_1v = \frac{m_1v}{3} + \frac{m_1v_2}{2}

Divide both side by m_1, then multiply by 6 we have

6v = 2v + 3v_2

3v_2 = 4v

v_2 = \frac{4v}{3}

So the final speed of the second car is 4/3 of the first car original speed

5 0
3 years ago
What part of the scientific method tests the hypothesis?
blagie [28]

Answer:

A hypothesis is a conjecture, based on knowledge obtained while seeking answers to the question. The hypothesis might be very specific, or it might be broad. Scientists then test hypotheses by conducting experiments or studies.

Explanation:

mark me as the brainliest

have a great day

6 0
3 years ago
Like the filters falling through the air, a car on the freeway represents an object with a high Reynolds number traveling throug
Goshia [24]

Answer:

ΔF=125.22 %

Explanation:

We know that drag force on the car given as

F_D=\dfrac{1}{2}\rho C_DA v^2

C_D=Drag coefficient

A=Projected area

v=Velocity

ρ=Density

All other quantity are constant so we can say that drag force and velocity can be given as

\dfrac{F_D_1}{F_D_2}=\dfrac{v_1^2}{v_2^2}

Now by putting the values

\dfrac{F_D_1}{F_D_2}=\dfrac{v_1^2}{v_2^2}

\dfrac{F_D_1}{F_D_2}=\dfrac{50^2}{75^2}

\dfrac{F_D_1}{F_D_2}=0.444

Percentage Change in the drag force

\Delta F=\dfrac{F_D_2-F_D_1}{F_D_1}\times 100

\Delta F=\dfrac{F_D_2-0.444F_D_2}{0.444F_D_2}\times 100

\Delta F=\dfrac{1-0.444}{0.444}\times 100

ΔF=125.22 %

Therefore force will increase by 125.22  %.

3 0
3 years ago
Other questions:
  • During a tornado in 2008 the Peachtree Plaza Westin Hotel in downtown Atlanta suffered damage. Suppose a piece of glass dropped
    9·1 answer
  • the radius of the tires on a particular vehicle 0.62m if the tires are rotating 5 times per second, what is the velocity of the
    12·1 answer
  • 5. The group number of the carbon family is:<br> a. 1<br> b. 2<br> C. 3<br> d. 4
    12·1 answer
  • Suppose certain coins have weights that are normally distributed with a mean of 5.805 g5.805 g and a standard deviation of 0.071
    13·1 answer
  • The momentum of blue whale with a mass of 146,000 kg and a top swimming speed of 24 km/hr is kg·m/s.
    14·1 answer
  • 10POiNTS!!! SPACE QUESTION!
    8·1 answer
  • Can someone help me pls!!
    9·1 answer
  • How high should a box of mass 20kg is lifted to store energy of 10,000 J? (g=10m/s)​
    11·1 answer
  • The Slingshot is a ride for two people. It consists of a single passenger cage, two towers, and two elastic bands. Potential ene
    5·1 answer
  • Two bumper cars collide into each other and each car jolts backwards. which one of Newton's laws is this?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!