1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lena [83]
3 years ago
8

Earth is the only planet able to support _____.

Physics
1 answer:
Sergeeva-Olga [200]3 years ago
3 0
<span>Earth is the only planet able to support _____

Life
</span>
You might be interested in
What type of galaxy is shown?
dexar [7]
Elliptical, because the shape of the galaxy isn’t like the others. It is unique to its own and doesn’t have another to compare to
8 0
3 years ago
Read 2 more answers
Calculate the phase angle (in radians) for a circuit with a maximum voltage of 12 V and w-50 Hz. The voltage source is connected
Vinvika [58]

Answer:

The phase angle is 0.0180 rad.

(c) is correct option.

Explanation:

Given that,

Voltage = 12 V

Angular velocity = 50 Hz

Capacitance C= 20\times10^{-2}\ F

Inductance L=20\times10^{-3}\ H

Resistance R=  50\ Omega

We need to calculate the impedance

Using formula of impedance

z=\sqrt{R^2+(\omega L-\dfrac{1}{\omega C})^2}

z=\sqrt{50^2+(50\times20\times10^{-3}-\dfrac{1}{50\times20\times10^{-2}})^2}

z=50.00

We need to calculate the phase angle

Using formula of phase angle

\theta=\cos^{-1}(\dfrac{R}{z})

\theta=\cos^{-1}(\dfrac{50}{50.00})

\theta=0.0180\ rad

Hence, The phase angle is 0.0180 rad.

3 0
3 years ago
Nonrenewable energy resources do not include which of the following?
Tems11 [23]
Hydrogen fuel cells is the answer
8 0
3 years ago
Read 2 more answers
in the same viewing window. Compare the magnitudes of f (x) and g(x) when x is close to 0. Use the comparison to write a short p
Ivanshal [37]

Answer:

Due to inertia of restttttttrestrestrestrest

6 0
3 years ago
A) Determine the x and y-components of the ball's velocity at t = 0.0s, 2.0, 3.0 secs.
malfutka [58]

The kinematic relationships we can find the position, acceleration and launch angle of the body on the planet Exidor.

a) the position are

      time (s)  x (m)   y(m)

        0            0          0

        2.0         3.6        1.2

        3.0         5.4        0.9

b) The aceleration is  g = 0.6 m / s²

c) The launch angle      θ = 33.7º

given parameters

  • the initial velocity of the body vₓ = 1.8m / s and v_y = 1.2 m / s
  • the movement times t = 1.0s, 2.0s and 3.0 s

to find

    a) position

    b) acceleration

    c) launch angle

Projectile launch is an application of kinematics to the movement of the body in two dimensions where there is no acceleration on the x axis and the y axis has the planet's gravity acceleration

b) To calculate the acceleration of the plant acting on the y-axis, we use that the vertical velocity of the body at the highest point is zero.

         v_y = v_{oy} - g t

where v and v({oy}  are the velocities of the body, g the acceleration of the planet's gravity and t the time

          0 = v_{oy} - gt

           g = v_{oy} / t

from the graph we observe that the highest point occurs for t = 2.0 s

           g = 1.2 / 2.0

           g = 0.6 m / s²

 

a) The position is requested for several times

X axis

in this axis there is no acceleration so we can use the uniform motion relationships

          vₓ = x / t

          x = vₓ t

where x is the position, vx is the velocity and t is the time

we calculate for the time

t = 0.0 s

          x₀ = 0

           

t = 2.0 s

          x₂ = 1.8 2

          x₂ = 3.6 m

t = 3.0 s

          x₃ = 1.8 3

          x₃ = 5.4 m

Y axis

In this axis there is the acceleration of the planet, let us use for the position the relation

          y = v_{oy} t - ½ g t²

t = 0.0 s

          y₀ = 0

          y₀ = 0 m

t = 2.0 s

         y₂ = 1.2 2 - ½ 0.6 2²

         y₂ = 1.2 m

t = 3.0 s

        y₃ = 1.2  3 - ½  0.6  3²

        y₃ = 0.9 m

c) the launch angle use the trigonometry relation

        tan θ = \frac{v_y}{v_x}

        θ = tan⁻¹ \frac{v_y}{v_x}

        θ = tan⁻¹ \frac{1.2}{1.8}

        θ = 33.7º

measured counterclockwise from the positive side of the x-axis

With the kinematic relationships we can find the position, acceleration and launch angle of the body on the planet Exidor.

a) the position are

      time (s)  x (m)   y(m)

        0            0          0

        2.0         3.6        1.2

        3.0         5.4        0.9

b) The aceleration is  g = 0.6 m / s²

c) The launch angle      θ = 33.7ºto)

learn more about projectile launch here:

brainly.com/question/10903823

4 0
2 years ago
Other questions:
  • Why is a football firm when it is inflated to its proper pressure
    8·1 answer
  • ) is it possible for one component of a vector to be zero, while the vector itself is not zero?
    13·1 answer
  • How do sound waves travel through a medium?
    15·1 answer
  • When electric power plants return used water to a stream, after using it in their steam turbines and condensers, this used water
    11·1 answer
  • What is the diffrence between fundamental and derived quantity . 2 diffrences please<br>​
    15·1 answer
  • The temperature of an ideal gas in a sealed 0.1 m3 container is reduced from 430 K to 270 K. The final pressure of the gas is 70
    11·1 answer
  • What is one disadvantage of a series circuit?
    8·1 answer
  • A 6 kg object falls 10 m. The object is attached mechanically to a paddle-wheel which rotates as the object falls. The paddle-wh
    7·1 answer
  • Buoyant force acts in the opposite direction as the force of
    14·1 answer
  • Plzzz answer this correctly
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!