this will be the answer
1: x=-4 or x=-3 and the second can be shown clearly
Answer:
321
Step-by-step explanation:
#/68&$#57:'#46&"¥<>`《\_£=%~《|
2 Answers:
- B) The lines are parallel
- C) The lines have the same slope.
Parallel lines always have equal slope, but different y intercepts.
==========================================================
Explanation:
Let's solve the second equation for y
3y - x = -7
3y = -7+x
3y = x-7
y = (x-7)/3
y = x/3 - 7/3
y = (1/3)x - 7/3
The equation is in y = mx+b form with m = 1/3 as the slope and b = -7/3 as the y intercept. We see that the first equation, where y was already isolated, also has a slope of m = 1/3. The two equations of this system have the same slope. Choice C is one of the answers.
However, they don't have the same y intercept. The first equation has y intercept b = -4, while the second has b = -7/3. This means that they do not represent the same line. They need to have identical slopes, and identical y intercepts (though the slope can be different from the y intercept of course) in order to have identical lines. So we can rule out choice D and E because of this.
Because the two equations have the same slope, but different y intercepts, this means the lines are parallel. Choice B is the other answer.
Parallel lines never touch or intersect, which in turn means there is no solution point. A solution point is where the lines cross. We can rule out choice A.
I recommend using your graphing calculator, Desmos, GeoGebra, or any graphing tool (on your computer or online) to graph each equation given. You should see two parallel lines forming. I used GeoGebra to make the graph shown below.
Answer:There will be 2 plants left over.
Step-by-step explanation: 44 divided by 7 equal 6.2. The whole number is 6 and the 2 is the left over.
A. √(0.8^2) + (0.6^2) = √1 = 1 => OK
<span>b.(-2/3,√ 5/3) = √(-2/3)^2 + 5/9) = √(4/9 +5/9) = √1 = 1 => OK
c.(√ 3/2, 1/3) = √(3/4 + 1/9) < 1 => it is inside the unit circle
d.(1,1)
= √(1 + 1) = √2 > 1 => NO. This point is beyond the limits of the unit circle.</span>