<em>The gravitational force between two objects is inversely proportional to the square of the distance between the two objects.</em>
The gravitational force between two objects is proportional to the product of the masses of the two objects.
The gravitational force between two objects is proportional to the square of the distance between the two objects. <em> no</em>
The gravitational force between two objects is inversely proportional to the distance between the two objects. <em> no</em>
The gravitational force between two objects is proportional to the distance between the two objects. <em> no</em>
The gravitational force between two objects is inversely proportional to the product of the masses of the two objects. <em> no</em>
Answer:

Explanation:
given,
street light height = 13 ft
man height = 6.3 ft
speed of the man = 3.5 ft/sec



hL = H(L-x)
hL = HL-Hx


L = 1.94 x



Answer:
The short answer is that velocity is the speed with a direction, while speed does not have a direction.
Explanation:
Speed is how fast an object is moving. It is calculated by the displacement of space per a unit of time. Velocity is the rate at which an object changes position in a certain direction. It is calculated by the displacement of space per a unit of time in a certain direction. Velocity deals with direction, while speed does not.
Answer:
<u><em></em></u>
- <u><em>1,500 kg.m/s</em></u>
Explanation:
First, arrange the information in a table:
Object Mass (kg) Velocity (m/s)
A 200 15
B 150 - 10
After the collision, the two objects are stick together, thus you talk aobut one object and one momentum.
According to the law of convervation of momentum, the momentum after the collision is equal to the momentum before the collision.
<u>Momentum before the collision, P₁</u>:


<u>Momentum after the collision</u>:
- As stated, it es equal to the momentum before the collision: 1,500 kg . m/s
Answer:
The sediment settled with the largest particles at the bottom and the smaller at the top.