100 meters in 9.92 seconds,
=distance/time
=100m/9.92s
=10.0806 m/s
Answer:
Average acceleration on first part of the chunk is given as

Average acceleration on second part of the chunk is given as

Explanation:
By momentum conservation along x direction we will have

so we have


also by energy conservation






by solving above equation we will have


Average acceleration on first part of the chunk is given as


Average acceleration on second part of the chunk is given as


Shadows are formed when an opaque object or an object that doesn't allow light to pass through is in the way or infront of etc. a source of light.
Answer:
Option 5.
Explanation:
Many of the properties of water like high specific heat, cohesion, high vaporization heat, etc can be contributed to the polar nature of water molecule.
Water being a polar molecule as it contains positively charged hydrogen and an electro-negative oxygen which results in uneven or non uniformity in sharing of electrons which leads to dipole formation and hence polarization of the molecule due to which it attracts its neighboring molecules.
This polar nature imparts the properties like cohesion, surface tension , adhesion, etc due to the presence of hydrogen bonds in water molecule.
Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s