Answer:
Explanation:
Given
Let us suppose police car and motorist travel in straight line and police car catches motorist after s distance
Distance travel by motorist
----1
Distance traveled by Police car


----2
from 1 & 2 we get

(a)Velocity of Police car after t sec



(b)time taken by police car is

(c)Distance travel by police car
Answer:
Assuming there are 28 days in each month,
750W = 0.75kW
Cost of electric bill = 0.75 × 8 × 28 × $0.23
= $38.64
Answer:
100
Explanation:
Momentum (P) = Mass (M) × Velocity (V)
Momentum = 25kg × 4.0m/s
Momentum = 100kg m/s
Momentum is simply a quantity that measures the impact of a moving body over something is due to the mass it posseses or the velocity with which it is moving.
Mathematically,ut is the product of mass and velocity of a body.
It is represented by capital p...(P)
P=mv
Solution to the problem:
we know P=mv
For mass,eliminate m from the equation,
m=P/v
Put values,
m=5000/5=1000kg
Complete question is:
A 1200 kg car reaches the top of a 100 m high hill at A with a speed vA. What is the value of vA that will allow the car to coast in neutral so as to just reach the top of the 150 m high hill at B with vB = 0 m/s. Neglect friction.
Answer:
(V_A) = 31.32 m/s
Explanation:
We are given;
car's mass, m = 1200 kg
h_A = 100 m
h_B = 150 m
v_B = 0 m/s
From law of conservation of energy,
the distance from point A to B is;
h = 150m - 100 m = 50 m
From Newton's equations of motion;
v² = u² + 2gh
Thus;
(V_B)² = (V_A)² + (-2gh)
(negative next to g because it's going against gravity)
Thus;
(V_B)² = (V_A)² - (2gh)
Plugging in the relevant values;
0² = (V_A)² - 2(9.81 × 50)
(V_A) = √981
(V_A) = 31.32 m/s