C. A mechanical wave generally travels faster in gases than liquids.
Answer:
Explanation:
v = Velocity of Ferdinand = 5 m/s
= Angle of jump
T = Time taken = 0.6 s
R = Distance between lily pads = 2.4 m
Horizontal range is given by
The angle at which Ferdinand make each of his jumps is
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
Answer: Both cannonballs will hit the ground at the same time.
Explanation:
Suppose that a given object is on the air. The only force acting on the object (if we ignore air friction and such) will be the gravitational force.
then the acceleration equation is only on the vertical axis, and can be written as:
a(t) = -(9.8 m/s^2)
Now, to get the vertical velocity equation, we need to integrate over time.
v(t) = -(9.8 m/s^2)*t + v0
Where v0 is the initial velocity of the object in the vertical axis.
if the object is dropped (or it only has initial velocity on the horizontal axis) then v0 = 0m/s
and:
v(t) = -(9.8 m/s^2)*t
Now, if two objects are initially at the same height (both cannonballs start 1 m above the ground)
And both objects have the same vertical velocity, we can conclude that both objects will hit the ground at the same time.
You can notice that the fact that one ball is fired horizontally and the other is only dropped does not affect this, because we only analyze the vertical problem, not the horizontal one. (This is something useful to remember, we can separate the vertical and horizontal movement in these type of problems)
Answer:
Explanation:
This is a recoil problem, which is just another application of the Law of Momentum Conservation. The equation for us is:
which, in words, is
The momentum of the astronaut plus the momentum of the piece of equipment before the equipment is thrown has to be equal to the momentum of all that same stuff after the equipment is thrown. Filling in:
Obviously, on the left side of the equation, nothing is moving so the whole left side equals 0. Doing the math on the right and paying specific attention to the sig fig's here (notice, I added a 0 after the 4 in the velocity value so our sig fig's are 2 instead of just 1. 1 is useless in most applications).
0 = 90.0v - 2.0 and
2.0 = 90.0v so
v = .022 m/s This is the rate at which he is moving TOWARDS the ship (negative was moving away from the ship, as indicated by the - in the problem). Now we can use the d = rt equation to find out how long this process will take him if he wants to reach his ship before he dies.
12 = .022t and
t = 550 seconds, which is the same thing as 9.2 minutes