Coronoid process of the ulna
Her weight = (mass) · (gravity) = (50kg) · (9.8 m/s²)
Work = (weight) · (height) = (50kg) · (9.8 m/s²) · (6 m)
Power = (work) / (time) = (50kg) · (9.8 m/s²) · (6 m) / (15 s)
Power = (50 · 9.8 · 6 / 15) · (kg · m² / s³)
Power = 196 (kg · m / s²) · (m) / s
Power = 196 Newton-meter/second
<em>Power = 196 watts</em>
Answer:
Explanation:
Let i be the angle of incidence and r be the angle of refraction .
From the figure
Tan ( 90 - i ) = 2.5 / 8
cot i = 2.5 / 8
Tan i = 8 / 2.5 = 3.2
i = 72.65°
From snell's law
sini / sin r = refractive index
sin 72.65 / sinr = 1.333
sin r = .9545 / 1.333
= .72
r = 46⁰
From the figure
Tan r = d / 4
Tan 46 = d /4
d = 4 x Tan 46
= 4 x 1.0355
=4.14 m .
I THINK C BECAUSE IF IT IS A GLASS BOX HOW DID A CACTUS GET IN AND NOTHING CAN GET IN OR OUT OF THE BOX SO THERE IS NO CACTUS IN THE BOX
Colors seen on the cover of our physics book result from color is due to Subtraction.
What is physics of color subtraction?
- Some visible spectrum wavelengths are intentionally removed during the subtraction procedure.
- For instance, the yellow filter transmits the green and red colors while blocking the blue.
- Red and blue are transmitted while the green is blocked by the magenta filter.
- Blue and green are transmitted while red is blocked by the cyan filter.
- Subtractive mixing gets its name from the fact that when colors are mixed, wavelengths are removed from what we see because each paint absorbs some of the wavelengths that the other paint reflects, leaving us with less wavelengths afterward.
Learn more about Subtractive mixing with the help of the given link:
brainly.com/question/1871483
#SPJ4