Answer:
Specific heat of water is 4.186 J/g/C. The heat required to raise the temperature by
is
Here is mass of water being heated, specific heat of water and change in temperature.
Here .
Heat energy required is
Explanation:
On the Newtonian theory of gravity, gravitation affects anything with mass. Assuming that none of the answer choices is the only thing that exists in the universe, all of the answer choices are subject to the law of universal gravitation (hence “universal”).
Satellites, water, frogs, and stars all have mass as they are all composed of matter. Thus, all four answer choices should be circled.
Answer:
the yield of product is YP=46.835 % and the concentration of solids is
Cs = 27.33%
Explanation:
Assuming that all the solids and fats remains in the milk after the evaporation, then the mass of product mP will be
Mass of fat in 100 kg of milk = 100 kg* 0.037 = mP* 0.079
mP = 100 kg* 0.037/0.079 = 46.835 kg
then the yield YP of the product is
YP= mP / 100 kg = 46.835 kg / 100 kg = 46.835 %
YP= 46.835 %
the concentration of solids Cs is
Mass of solids in 100 kg of milk = 100 kg* 0.128 = 46.835 kg * Cs
Cs = 100 kg* 0.128 / 46.835 kg = 0.2733 = 27.33%
Cs = 27.33%
The volume of a cylinder is given by the formula v=pi r^2h, where r is the radius of the cylinder and h is the height.
<h3>What Does a Cylinder's Surface Area Look Like?</h3>
The overall area or region that the surface of a cylinder covers is referred to as its surface area. A cylinder's total surface area includes both the area of the curved surface and the area of the two flat surfaces because there are two flat surfaces and one curved surface. A cylinder's surface area is measured in square units like m2, in2, cm2, yd2, etc.
<h3>What is the cylinder's total surface area?</h3>
The sum of the curved surface areas makes up the cylinder's overall surface area.
To know more about cylinder surface visit:-
brainly.com/question/22074027
#SPJ4
Answer:
Explanation:
The horizontal distance covered by the ball in the falling is only determined by its horizontal motion - in fact, it is given by
where
is the horizontal velocity
t is the time of flight
The time of flight, instead, is only determined by the vertical motion of the ball: however, in this problem the vertical velocity is not changed (it is zero in both cases), so the time of flight remains the same.
In the first situation, the horizontal distance covered is
in the second case, the horizontal velocity is increased to
And so the new distance travelled will be
So, the distance increases linearly with the horizontal velocity.