Answer:
The buoyant force is 3778.8 N in upward.
Explanation:
Given that,
Mass of balloon = 222 Kg
Volume = 328 m³
Density of air = 1.20 kg/m³
Density of helium = 0.179 kg/m³
We need to calculate the buoyant force acting
Using formula of buoyant force

Where,
= density of air
V = Volume of balloon
g = acceleration due to gravity
Put the value into the formula


This buoyant force is in upward direction.
Hence, The buoyant force is 3778.8 N in upward.
Answer:
21 m/s.
Explanation:
The computation of the wind velocity is shown below:
But before that, we need to find out the angles between the vectors
53° - 35° = 18°
Now we have to sqaure it i.e given below
v^2 = 55^2 + 40^2 - 2 · 55 · 40 · cos 18°
v^2 = 3025 + 1600 - 2 · 55 · 40 · 0.951
v^2 = 440.6
v = √440.6
v = 20.99
≈ 21 m/s
Hence, The wind velocity is 21 m/s.
Correct question:
A solenoid of length 0.35 m and diameter 0.040 m carries a current of 5.0 A through its windings. If the magnetic field in the center of the solenoid is 2.8 x 10⁻² T, what is the number of turns per meter for this solenoid?
Answer:
the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Explanation:
Given;
length of solenoid, L= 0.35 m
diameter of the solenoid, d = 0.04 m
current through the solenoid, I = 5.0 A
magnetic field in the center of the solenoid, 2.8 x 10⁻² T
The number of turns per meter for the solenoid is calculated as follows;

Therefore, the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Average Velocity=Total Distance/Total Time


You can only determine the speed since the only info we know is how much you ran in how long of a time.