The answer is number three because when electrons get excited they move up to the higher energy levels, and they emit light as the come back down to the lower quanta.
Answer:
Beta emission
Explanation:
In beta emission, a neutron is converted into a proton thereby emitting an electron and a neutrino. A neutrino is a particle that serves to balance the spins.
When a nucleus undergoes beta emission, the mass number of the parent and daughter nuclei remain the same while the atomic number of the daughter nucleus is greater than that of its parent by one unit.
Hence, in beta emission, the daughter nucleus is found one pace to the right of the parent in the periodic table.
We will assume that the question is discussing 1.000 atm of N₂ initially. The question is discussing diffusion rates of two gases and asks us to identify the species. We can use Graham's Law to attempt this problem with the following formula:
Rate₁/Rate₂ = sqrt(M₂/M₁)
We are told that the N₂ is 3.55 times as fast as the unknown species, so rate 1 = 3.55 and rate 2 = 1. We know the molecular weight of N₂ as 28 g/mol. Now we can use the equation above to solve for the molecular weight of the unknown, M₂:
3.55/1 = sqrt(M2/28)
(3.55)² = M₂/28
M₂ = 28 (3.55)₂
M₂ = 353 g/mol
The unknown compound has a molecular mass of roughly 353 g/mol and this is very close to the molecular mass of UF₆ which is 352.02 g/mol. Therefore, it is likely that the unknown gas is UF₆.