1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dusya [7]
2 years ago
7

Help me solve this pls

Mathematics
1 answer:
kirill [66]2 years ago
8 0
I think the answer is b
You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
The vertices of ∆ABC are A(2, 8), B(16, 2), and C(6, 2). what is the perimeter and area in square units
ad-work [718]
Check the picture below.

the triangle has that base and that height, recall that A = 1/2 bh.

now as for the perimeter, you can pretty much count the units off the grid for the segment CB, so let's just find the lengths of AC and AB,

\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\&#10;\begin{array}{ccccccccc}&#10;&&x_1&&y_1&&x_2&&y_2\\&#10;%  (a,b)&#10;&A&(~ 2 &,& 8~) &#10;%  (c,d)&#10;&C&(~ 6 &,& 2~)&#10;\end{array}~~~ &#10;%  distance value&#10;d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}&#10;\\\\\\&#10;AC=\sqrt{(6-2)^2+(2-8)^2}\implies AC=\sqrt{4^2+(-6)^2}&#10;\\\\\\&#10;AC=\sqrt{16+36}\implies AC=\sqrt{52}\implies AC=\sqrt{4\cdot 13}&#10;\\\\\\&#10;AC=\sqrt{2^2\cdot 13}\implies AC=2\sqrt{13}

\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\&#10;\begin{array}{ccccccccc}&#10;&&x_1&&y_1&&x_2&&y_2\\&#10;%  (a,b)&#10;&A&(~ 2 &,& 8~) &#10;%  (c,d)&#10;&B&(~ 16 &,& 2~)&#10;\end{array}\\\\\\&#10;AB=\sqrt{(16-2)^2+(2-8)^2}\implies AB=\sqrt{14^2+(-6)^2}&#10;\\\\\\&#10;AB=\sqrt{196+36}\implies AB=\sqrt{232}\implies AB=\sqrt{4\cdot 58}&#10;\\\\\\&#10;AB=\sqrt{2^2\cdot 58}\implies AB=2\sqrt{58}

so, add AC + AB + CB, and that's the perimeter of the triangle.

8 0
3 years ago
Answer both please man. Or sorry you'll get a 1 star rating. THanks for answering guys!
Nataliya [291]

For the first one,

x = 10.

For the second one,

x = 12

5 0
3 years ago
Read 2 more answers
What is the perimeter of the framed picture in terms of x? ( x + ) inches
Marysya12 [62]

Answer:

jjytrewasxcfgyuikjyt45678ijhgfgn

Step-by-step explanation:

5 0
3 years ago
There was 135 buttons in a jar after Robin put more buttons into the jar there were 175 vines in the jar how many more groups of
RSB [31]

Answer:

4 groups of ten

Step-by-step explanation:

175-135=40

5 0
2 years ago
Other questions:
  • 0.5004 as a fraction
    8·1 answer
  • A test has 20 questions What percent I get if answered 17 questions correct.
    12·2 answers
  • Please help me I will give you the best answer
    9·1 answer
  • If(x)=4x+2 and g(x)=2x-4 what is f(g(x))
    8·1 answer
  • What’s 5 plus 10 because I wasn’t very sure and a need it for my math homework
    10·2 answers
  • Evaluate the following when x=3
    10·2 answers
  • HELP! 15 POINTS AND BRAINLIEST!
    14·2 answers
  • Identify the solution found in Quadrant IV. Express your answer in the form (x, y) where x and y are both integers.
    13·1 answer
  • Help me please please please
    7·1 answer
  • Which measurement uses square units​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!