The gravitational field strength is approximately equal to 10 N.
<u>Explanation:</u>
Gravitational field strength is the measure of gravitational force acting on any object placed on the surface of the planet. Generally, the mass of the object is considered as 1 kg.
So the gravitational field strength will be equal to the gravitational force acting on the object.
The formula for gravitational field strength is

Here g is the gravitational field strength, m is the mass of the object placed on the surface and F is the gravitational force acting on the object.
Since, the mass of any object placed on the surface of earth will be negligible compared to the mass of Earth, so the mass of the object is considered as 1 kg.
Then the g = F
And 
Here G is the gravitational constant, M is the mass of Earth and m is the mass of the object placed on the surface, while r is the radius of the Earth.


So, the gravitational field strength is approximately equal to 10 N.
Answer:
distance can describe the total distance moved and displacement shows how far something has moved from its starting position (in a straight line from point a to point b) the object doesn't have to move in a straight line, but that is how displacement is measured
Answer:

Explanation:
We use the kinematics equation to solve this question:

because the ball is dropped
the acceleration is the gravity, negative because it points downwards
initial height
final height
So:


Answer:
55407
Explanation:
we have given that magnetic field B=3.5 T
current through the coil=90 A
Length of solenoid =0.72 m
we know the formula of magnetic field

so 
so the number of turn in solenoid will be 55407
Explanation:
Consider the kinematic equation,

where x is the distance traveled, v is the initial velocity, a is the acceleration and t is time. By plugging in known values and solving for x,

through simple algebra we get

where this is the distance traveled in meters.